• Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972214, https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ault, T. R., and S. St. George, 2010: The magnitude of decadal and multidecadal variability in North American precipitation. J. Climate, 23, 842850, https://doi.org/10.1175/2009JCLI3013.1.

    • Search Google Scholar
    • Export Citation
  • Berg, A., B. R. Lintner, K. L. Findell, S. Malyshev, P. C. Loikith, and P. Gentine, 2014: Impact of soil moisture–atmosphere interactions on surface temperature distribution. J. Climate, 27, 79767993, https://doi.org/10.1175/JCLI-D-13-00591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P., A. Gettelman, C. Hannay, V. E. Larsen, R. Neale, C. Craig, and C. Chen, 2018: The path to CAM6: Coupled simulations with CAM5.4 and CAM5.5. Geosci. Model Dev., 11, 235255, https://doi.org/10.5194/gmd-11-235-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CAM Team, 2021: CAM6 (Community Atmosphere Model version 6), model item. OpenGMS, accessed April 2022, https://geomodeling.njnu.edu.cn/modelItem/f36d9d3a-e937-46ac-ba7c-286886ccfad7.

    • Crossref
    • Export Citation
  • Chen, M., and Coauthors, 2008: CPC unified gauge-based analysis of global daily precipitation. Western Pacific Geophysics Meeting, Cairns, Australia, Amer. Geophys. Union, Abstract A24A-05.

    • Crossref
    • Export Citation
  • Chen, X., and J. M. Wallace, 2015: ENSO-like variability: 1900–2013. J. Climate, 28, 96239641, https://doi.org/10.1175/JCLI-D-15-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., M. Hoerling, Z. Liu, and J. Eischeid, 2019: Physical understanding of human-induced changes in U.S. hot droughts using equilibrium climate simulations. J. Climate, 32, 44314443, https://doi.org/10.1175/JCLI-D-18-0611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., R. Seager, M. A. Cane, and D. W. Stahle, 2007: North American droughts: Reconstructions, causes, and consequences. Earth-Sci. Rev., 81, 93134, https://doi.org/10.1016/j.earscirev.2006.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, A. Rosati, G. A. Vecchi, and A. T. Wittenberg, 2015: A link between the hiatus in global warming and North American drought. J. Climate, 28, 38343845, https://doi.org/10.1175/JCLI-D-14-00616.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., R. A. Maddox, K. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6, 16651677, https://doi.org/10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., R. J. Oglesby, C. M. Rowe, D. B. Loope, and Q. Hul, 2008: Atlantic and Pacific SST influences on medieval drought in North America simulated by the Community Atmospheric Model. J. Geophys. Res., 113, D11101, https://doi.org/10.1029/2007JD009347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. R. Leung, J. Lu, Y. Liu, M. Huang, and Y. Qian, 2014: Robust spring drying in the southwestern US and seasonal migration of wet/dry patterns in a warmer climate. Geophys. Res. Lett., 41, 17451751, https://doi.org/10.1002/2014GL059562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and D. S. Battisti, 1999: Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J. Climate, 12, 21132123, https://doi.org/10.1175/1520-0442(1999)012<2113:IEAIEL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herweijer, C., and R. Seager, 2008: The global footprint of persistent extratropical drought in the instrumental era. Int. J. Climatol., 28, 17611774, https://doi.org/10.1002/joc.1590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herweijer, C., R. Seager, and E. R. Cook, 2006: North American droughts of the mid to late nineteenth century: A history, simulation and implications for medieval drought. Holocene, 16, 159171, https://doi.org/10.1191/0959683606hl917rp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., and Coauthors, 2022: Record low North American monsoon rainfall in 2020 reignites drought over the American Southwest. Bull. Amer. Meteor. Soc., 103, S26S32, https://doi.org/10.1175/BAMS-D-21-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. Eischeid, and J. Perlwitz, 2010: Regional precipitation trends: Distinguishing natural variability from anthropogenic forcing. J. Climate, 23, 21312145, https://doi.org/10.1175/2009JCLI3420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and Coauthors, 2013: Anatomy of an extreme event. J. Climate, 26, 28112832, https://doi.org/10.1175/JCLI-D-12-00270.1.

  • Hoerling, M. P., J. Barsugli, B. Livneh, J. Eischeid, X. Quan, and A. Badger, 2019: Causes for the century-long decline in Colorado River flow. J. Climate, 32, 81818203, https://doi.org/10.1175/JCLI-D-19-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H.-P., R. Seager, and Y. Kushnir, 2005: The 1976/77 transition in precipitation over the Americas and the influence of tropical SST. Climate Dyn., 24, 721740, https://doi.org/10.1007/s00382-005-0015-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary data set for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011a: Reassessing biases and other uncertainties in sea surface temperature observations since 1850: 1. Measurement and sampling uncertainties. J. Geophys. Res., 116, D14103, https://doi.org/10.1029/2010JD015218.

    • Crossref
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011b: Reassessing biases and other uncertainties in sea surface temperature observations since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, D14104, https://doi.org/10.1029/2010JD015220.

    • Crossref
    • Export Citation
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Bovile, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 11311149, https://doi.org/10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247268, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. D. Schubert, and M. J. Suarez, 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341, https://doi.org/10.1175/2008JCLI2718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 1998: Annual cycle of Pacific–North American seasonal predictability associated with different phases of ENSO. J. Climate, 11, 32953308, https://doi.org/10.1175/1520-0442(1998)011<3295:ACOPNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., A. Leetmaa, M. J. Nath, and H.-L. Wang, 2005: Influences of ENSO-induced Indo–western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J. Climate, 18, 29222942, https://doi.org/10.1175/JCLI3445.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, F., C. Deser, I. R. Simpson, and L. Terray, 2018: Attributing the U.S. Southwest’s recent shift into drier conditions. Geophys. Res. Lett., 45, 62516261, https://doi.org/10.1029/2018GL078312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and Coauthors, 2014: North American climate in CMIP5 experiments: Part III: Assessment of twenty-first-century projections. J. Climate, 27, 22302270, https://doi.org/10.1175/JCLI-D-13-00273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mankin, J. S., I. Simpson, A. Hoell, R. Fu, J. Lisonbee, A. Sheffield, and D. Barrie, 2021: NOAA Drought Task Force Report on the 2020–2021 southwestern U.S. drought. National Oceanic and Atmospheric Administration Drought Task Force, Modeling Analysis Predictability and Prediction, National Integrated Drought Information System, Tech. Rep., 20 pp., https://www.drought.gov/sites/default/files/2021-09/NOAA-Drought-Task-Force-IV-Southwest-Drought-Report-9-23-21.pdf.

    • Crossref
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, https://doi.org/10.1023/A:1015820616384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691080, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAfee, S. A., 2014: Consistency and the lack thereof in Pacific decadal oscillation impacts on North American winter climate. J. Climate, 27, 74107431, https://doi.org/10.1175/JCLI-D-14-00143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKinnon, K. A., A. Poppick, and I. R. Simpson, 2021: Hot extremes have become drier in the United States Southwest. Nat. Climate Change, 11, 598604, https://doi.org/10.1038/s41558-021-01076-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y., P. DiNezio, and C. Deser, 2017: Evolving impacts of multiyear La Niña events on atmospheric circulation and U.S. drought. Geophys. Res. Lett., 44, 11 61411 623, https://doi.org/10.1002/2017GL075034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., J. E. Janowiak, and M. S. Halpert, 1985: The analysis and display of real time surface climate data. Mon. Wea. Rev., 113, 11011106, https://doi.org/10.1175/1520-0493(1985)113<1101:TAADOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004a: Causes of long-term drought in the United States Great Plains. J. Climate, 17, 485503, https://doi.org/10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004b: On the cause of the 1930s Dust Bowl. Science, 303, 18551859, https://doi.org/10.1126/science.1095048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22, 52515272, https://doi.org/10.1175/2009JCLI3060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., 2015: Decadal hydroclimate variability across the Americas. Climate Change: Multidecadal and Beyond, C.-P. Chang et al., Eds., World Scientific, 235–254.

    • Crossref
    • Export Citation
  • Seager, R., and M. P. Hoerling, 2014: Atmosphere and ocean origins of North American drought. J. Climate, 27, 45814606, https://doi.org/10.1175/JCLI-D-13-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40654088, https://doi.org/10.1175/JCLI3522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., R. Burgman, Y. Kushnir, A. Clement, E. Cook, N. Naik, and J. Velez, 2008: Tropical Pacific forcing of North American medieval megadroughts: Testing the concept with an atmosphere model forced by coral-reconstructed SSTs. J. Climate, 21, 6175–6190, https://doi.org/10.1175/2008JCLI2170.1.

    • Crossref
    • Export Citation
  • Seager, R., L. Goddard, J. Nakamura, N. Naik, and D. E. Lee, 2014a: Dynamical causes of the 2010/11 Texas–northern Mexico drought. J. Hydrometeor., 15, 3968, https://doi.org/10.1175/JHM-D-13-024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2014b: Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Climate, 27, 79217948, https://doi.org/10.1175/JCLI-D-14-00153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Henderson, M. Cane, H. Liu, and J. Nakamura, 2017: Is there a role for human-induced climate change in the precipitation decline that drove the California drought? J. Climate, 30, 10 23710 258, https://doi.org/10.1175/JCLI-D-17-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, and H. Zhang, 2019a: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Climate Change, 9, 517522, https://doi.org/10.1038/s41558-019-0505-x.

    • Search Google Scholar
    • Export Citation
  • Seager, R., T. J. Osborn, Y. Kushnir, I. R. Simpson, J. Nakamura, and H. Liu, 2019b: Climate variability and change of Mediterranean-type climates. J. Climate, 32, 28872915, https://doi.org/10.1175/JCLI-D-18-0472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Henderson, and M. A. Cane, 2022: Persistent discrepancies between observed and modeled trends in the tropical Pacific Ocean. J. Climate, 35, 45714584, https://doi.org/10.1175/JCLI-D-21-0648.1.

    • Search Google Scholar
    • Export Citation
  • Shin, S.-I., and P. D. Sardeshmukh, 2011: Critical influence of the pattern of tropical ocean warming on remote climate trends. Climate Dyn., 36, 15771591, https://doi.org/10.1007/s00382-009-0732-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, S.-I., P. D. Sardeshmukh, and R. S. Webb, 2010: Optimal tropical sea surface temperature forcing of North American drought. J. Climate, 23, 39073917, https://doi.org/10.1175/2010JCLI3360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swetnam, T. W., and J. L. Betancourt, 1998: Mesoscale disturbance and ecological response to decadal climate variability in the American Southwest. J. Climate, 11, 31283147, https://doi.org/10.1175/1520-0442(1998)011<3128:MDAERT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., R. Seager, C. Li, H. Liu, and N. Henderson, 2018: Mechanisms of future spring drying in the southwestern United States in CMIP5 models. J. Climate, 31, 42654279, https://doi.org/10.1175/JCLI-D-17-0574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., R. Seager, C. Li, H. Liu, and N. Henderson, 2021: Future summer drying in the U.S. Corn Belt and the role of mid-latitude storm tracks. J. Climate, 34, 90439056, https://doi.org/10.1175/JCLI-D-20-1004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., J.-L. Dufresne, Y. Kosaka, T. Mauritsen, and H. Tatebe, 2021: Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. Nat. Climate Change, 11, 3337, https://doi.org/10.1038/s41558-020-00933-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Williams, A. P., and Coauthors, 2020: Large contribution from anthropogenic warming to an emerging North American megadrought. Science, 368, 314318, https://doi.org/10.1126/science.aaz9600.

    • Search Google Scholar
    • Export Citation
  • Williams, A. P., B. I. Cook, and J. E. Smerdon, 2022: Rapid intensification of the emerging southwestern North American megadrought in 2020–21. Nat. Climate Change, 12, 232–234, https://doi.org/10.1038/s41558-022-01290-z.

  • Xiao, M., B. Udall, and D. P. Lettenmaier, 2018: On the causes of declining Colorado River streamflows. Water Resour. Res., 54, 67396756, https://doi.org/10.1029/2018WR023153.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840858, https://doi.org/10.1175/1520-0442(1996)009<0840:AOGMPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yin, D., M. L. Roderick, G. Leech, F. Sun, and Y. Huang, 2014: The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys. Res. Lett., 41, 78917897, https://doi.org/10.1002/2014GL062039.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like decade-to-century scale variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 774 774 62
Full Text Views 242 242 17
PDF Downloads 309 309 18

Mechanisms of a Meteorological Drought Onset: Summer 2020 to Spring 2021 in Southwestern North America

Richard SeageraLamont Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Richard Seager in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4772-9707
,
Mingfang TingaLamont Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Mingfang Ting in
Current site
Google Scholar
PubMed
Close
,
Patrick AlexanderaLamont Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Patrick Alexander in
Current site
Google Scholar
PubMed
Close
,
Jennifer NakamuraaLamont Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Jennifer Nakamura in
Current site
Google Scholar
PubMed
Close
,
Haibo LiuaLamont Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Haibo Liu in
Current site
Google Scholar
PubMed
Close
,
Cuihua LiaLamont Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Cuihua Li in
Current site
Google Scholar
PubMed
Close
, and
Isla R. SimpsonbNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Isla R. Simpson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

By summer 2021 moderate to exceptional drought impacted 28% of North America, focused west of the Mississippi, with serious impacts on fire, water resources, and agriculture. Here, using reanalyses and SST-forced climate models, we examine the onset and development of this southwestern drought from its inception in summer 2020 through winter and spring 2020/21. The drought severity in summer 2021 resulted from four consecutive prior seasons in which precipitation in the southwest United States was the lowest on record or, at least, extremely dry. The dry conditions in summer 2020 arose from internal atmospheric variability but are beyond the range of what the studied atmosphere models simulate for that season. From winter 2020 through spring 2021 the worsening drought conditions were guided by the development of a La Niña in the tropical Pacific Ocean. Decadal variability in the Pacific Ocean aided drought in the southern part of the region by driving the cool season to be drier during the last two decades. There is also evidence that the southern part of the region in spring is drying due to human-driven climate change. In sum the drought onset was driven by a combination of internal atmospheric variability and interannual climate variability and aided by natural decadal variability and human-driven climate change.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Seager, seager@ldeo.columbia.edu

Abstract

By summer 2021 moderate to exceptional drought impacted 28% of North America, focused west of the Mississippi, with serious impacts on fire, water resources, and agriculture. Here, using reanalyses and SST-forced climate models, we examine the onset and development of this southwestern drought from its inception in summer 2020 through winter and spring 2020/21. The drought severity in summer 2021 resulted from four consecutive prior seasons in which precipitation in the southwest United States was the lowest on record or, at least, extremely dry. The dry conditions in summer 2020 arose from internal atmospheric variability but are beyond the range of what the studied atmosphere models simulate for that season. From winter 2020 through spring 2021 the worsening drought conditions were guided by the development of a La Niña in the tropical Pacific Ocean. Decadal variability in the Pacific Ocean aided drought in the southern part of the region by driving the cool season to be drier during the last two decades. There is also evidence that the southern part of the region in spring is drying due to human-driven climate change. In sum the drought onset was driven by a combination of internal atmospheric variability and interannual climate variability and aided by natural decadal variability and human-driven climate change.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Seager, seager@ldeo.columbia.edu

Supplementary Materials

    • Supplemental Materials (PDF 237 KB)
Save