• Brasseur, P., and J. Verron, 2006: The SEEK filter method for data assimilation in oceanography: A synthesis. Ocean Dyn., 56, 650661, https://doi.org/10.1007/s10236-006-0080-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, N., K.-M. Kim, Y.-K. Lim, and M.-I. Lee, 2019: Decadal changes in the leading patterns of sea level pressure in the Arctic and their impacts on the sea ice variability in boreal summer. Cryosphere, 13, 30073021, https://doi.org/10.5194/tc-13-3007-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clancy, R., C. M. Bitz, E. Blanchard-Wrigglesworth, M. C. McGraw, and S. M. Cavallo, 2022: A cyclone-centered perspective on the drivers of asymmetric patterns in the atmosphere and sea ice during Arctic cyclones. J. Climate, https://doi.org/10.1175/JCLI-D-21-0093.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, A. D., and M. C. Serreze, 2016: Does the summer Arctic frontal zone influence Arctic Ocean cyclone activity? J. Climate, 29, 49774993, https://doi.org/10.1175/JCLI-D-15-0755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, A. D., J. V. Lukovich, M. R. McCrystall, J. C. Stroeve, and D. G. Barber, 2022: Reduced sea ice enhances intensification of winter storms over the Arctic Ocean. J. Climate, 35, 33533370, https://doi.org/10.1175/JCLI-D-21-0747.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35833604, https://doi.org/10.1256/qj.05.105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., and O. M. Smedstad, 2013: Variational data assimilation for the global ocean. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, S. K. Park and L. Xu, Eds., Springer, 303–343.

    • Crossref
    • Export Citation
  • Curry, J. A., J. L. Schramm, and E. E. Ebert, 1993: Impact of clouds on the surface radiation balance of the Arctic Ocean. Meteor. Atmos. Phys., 51, 197217, https://doi.org/10.1007/BF01030494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and H. Teng, 2008: Recent trends in Arctic sea ice and the evolving role of atmospheric circulation forcing, 1979–2007. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 7–26, https://doi.org/10.1029/180GM03.

    • Crossref
    • Export Citation
  • Eastman, R., and S. G. Warren, 2010: Interannual variations of Arctic cloud types in relation to sea ice. J. Climate, 23, 42164232, https://doi.org/10.1175/2010JCLI3492.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fearon, M. G., J. D. Doyle, D. R. Ryglicki, P. M. Finocchio, and M. Sprenger, 2021: The role of cyclones in moisture transport into the Arctic. Geophys. Res. Lett., 48, e2020GL090353, https://doi.org/10.1029/2020GL090353.

    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., and J. D. Doyle, 2021: Summer cyclones and their association with short-term sea ice variability in the Pacific sector of the Arctic. Front. Earth Sci., 9, 738497, https://doi.org/10.3389/feart.2021.738497.

    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., J. D. Doyle, D. P. Stern, and M. G. Fearon, 2020: Short-term impacts of Arctic summer cyclones on sea ice extent in the marginal ice zone. Geophys. Res. Lett., 47, e2020GL088338, https://doi.org/10.1029/2020GL088338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heo, E.-S., M.-K. Sung, S.-I. An, and Y.-M. Yang, 2021: Decadal phase shift of summertime Arctic dipole pattern and its nonlinear effect on sea ice extent. Int. J. Climatol., 41, 47324742, https://doi.org/10.1002/joc.7097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hirahara, S., M. A. Balmaseda, E. de Boisseson, and H. Hersbach, 2016: Sea surface temperature and sea ice concentration for ERA5. ERA Rep. 26, 27 pp., https://www.ecmwf.int/en/elibrary/16555-sea-surface-temperature-and-sea-ice-concentration-era5.

    • Crossref
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2015: CICE: The Los Alamos sea ice model documentation and software user’s manual version 5.1. Tech. Rep. LA-CC-06-012, 116 pp., http://www.ccpo.odu.edu/∼klinck/Reprints/PDF/cicedoc2015.pdf.

    • Crossref
    • Export Citation
  • Itkin, P., and Coauthors, 2017: Thin ice and storms: Sea ice deformation from buoy arrays deployed during N-ICE2015. J. Geophys. Res. Oceans, 122, 46614674, https://doi.org/10.1002/2016JC012403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, J. M., E. C. Carmack, F. A. McLaughlin, S. E. Allen, and R. G. Ingram, 2010: Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993–2008. J. Geophys. Res., 115, C05021, https://doi.org/10.1029/2009JC005265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, J. M., S. E. Allen, F. A. McLaughlin, R. A. Woodgate, and E. C. Carmack, 2011: Changes to the near-surface waters in the Canada Basin, Arctic Ocean from 1993–2009: A basin in transition. J. Geophys. Res., 116, C10008, https://doi.org/10.1029/2011JC007069.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, https://doi.org/10.1029/2008GL033451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koyama, T., J. Stroeve, J. Cassano, and A. Crawford, 2017: Sea ice loss and Arctic cyclone activity from 1979 to 2014. J. Climate, 30, 47354754, https://doi.org/10.1175/JCLI-D-16-0542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishfield, R., J. Toole, A. Proshutinsky, and M.-L. Timmermans, 2008: Automated ice-tethered profilers for seawater observations under pack ice in all seasons. J. Atmos. Oceanic Technol., 25, 20912105, https://doi.org/10.1175/2008JTECHO587.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. Spreen, and S. Pang, 2013: Arctic sea ice circulation and drift speed: Decadal trends and ocean currents. J. Geophys. Res. Oceans, 118, 24082425, https://doi.org/10.1002/jgrc.20191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lei, R., D. Gui, J. K. Hutchings, P. Heil, and N. Li, 2020: Annual cycles of sea ice motion and deformation derived from buoy measurements in the western Arctic Ocean over two ice seasons. J. Geophys. Res. Oceans, 125, e2019JC01531, https://doi.org/10.1029/2019JC015310.

    • Crossref
    • Export Citation
  • Lellouche, J.-M., and Coauthors, 2021: The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci., 9, 698876, https://doi.org/10.3389/feart.2021.698876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere, 9, 269283, https://doi.org/10.5194/tc-9-269-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., J. Zhang, A. Schweiger, M. Steele, and H. Stern, 2009: Arctic sea ice retreat in 2007 follows thinning trend. J. Climate, 22, 165176, https://doi.org/10.1175/2008JCLI2521.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and A. Schweiger, 2017: Synoptic conditions, clouds, and sea ice melt onset in the Beaufort and Chukchi seasonal ice zone. J. Climate, 30, 69997016, https://doi.org/10.1175/JCLI-D-16-0887.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukovich, J. V., J. C. Stroeve, A. Crawford, L. Hamilton, M. Tsamados, H. Heorton, and F. Massonnet, 2021: Summer extreme cyclone impacts on Arctic sea ice. J. Climate, 34, 4817–4834, https://doi.org/10.1175/JCLI-D-19-0925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., and Coauthors, 2008: NEMO ocean engine (Note du Pole de modélisation 27). Institut Pierre-Simon Laplace (IPSL), 300 pp., http://eprints.soton.ac.uk/id/eprint/64324.

    • Crossref
    • Export Citation
  • Maksimovich, E., and T. Vihma, 2012: The effect of surface heat fluxes on interannual variability in the spring onset of snow melt in the central Arctic Ocean. J. Geophys. Res., 117, C07012, https://doi.org/10.1029/2011JC007220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metzger, E. J., and Coauthors, 2017: Global Ocean Forecast System 3.1 validation testing. Naval Research Laboratory Tech. Memo. NRL/MR/7320--17-9722, 60 pp., https://apps.dtic.mil/sti/pdfs/AD1034517.pdf.

    • Crossref
    • Export Citation
  • Ogi, M., and I. G. Rigor, 2013: Trends in Arctic sea ice and the role of atmospheric circulation. Atmos. Sci. Lett., 14, 97101, https://doi.org/10.1002/asl2.423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., J. A. Francis, E. Hanna, and M. Wang, 2012: The recent shift in early summer Arctic atmospheric circulation. Geophys. Res. Lett., 39, L19804, https://doi.org/10.1029/2012GL053268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H.-S., S. Lee, S.-W. Son, S. B. Feldstein, and Y. Kosaka, 2015: The impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability. J. Climate, 28, 50305040, https://doi.org/10.1175/JCLI-D-15-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, L., X. Zhang, J.-H. Kim, K.-H. Cho, B.-M. Kim, Z. Wang, and H. Tang, 2021: Role of intense Arctic storm in accelerating summer sea ice melt: An in situ observational study. Geophys. Res. Lett., 48, e2021GL092714, https://doi.org/10.1029/2021GL092714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., 2018: Sunlight, clouds, sea ice, albedo, and the radiative budget: The umbrella versus the blanket. Cryosphere, 12, 21592165, https://doi.org/10.5194/tc-12-2159-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., B. Light, H. Eicken, K. F. Jones, K. Runciman, and S. V. Nghiem, 2007: Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophys. Res. Lett., 34, L19505, https://doi.org/10.1029/2007GL031480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., 2012: Onset and end of the summer melt season over sea ice: Thermal structure and surface energy perspective from SHEBA. Climate Dyn., 39, 13491371, https://doi.org/10.1007/s00382-011-1196-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., A. V. Pnyushkov, and L. A. Timokhov, 2012: Warming of the intermediate Atlantic Water of the Arctic Ocean in the 2000s. J. Climate, 25, 83628370, https://doi.org/10.1175/JCLI-D-12-00266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiber, E. A. P., and M. C. Serreze, 2020: Impacts of synoptic-scale cyclones on Arctic sea-ice concentration: A systematic analysis. Ann. Glaciol., 61, 139153, https://doi.org/10.1017/aog.2020.23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweiger, A., R. Lindsay, J. Zhang, M. Steele, H. Stern, and R. Kwok, 2011: Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res., 116, C00D06, https://doi.org/10.1029/2011JC007084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M., and Coauthors, 2018: Episodic reversal of autumn ice advance caused by release of ocean heat in the Beaufort Sea. J. Geophys. Res. Oceans, 123, 31643185, https://doi.org/10.1002/2018JC013764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spreen, G., R. Kwok, and D. Menemenlis, 2011: Trends in Arctic sea ice drift and role of wind forcing: 1992–2009. Geophys. Res. Lett., 38, L19501, https://doi.org/10.1029/2011GL048970.

    • Search Google Scholar
    • Export Citation
  • Spreen, G., L. de Steur, D. Divine, S. Gerland, E. Hansen, and R. Kwok, 2020: Arctic sea ice volume export through Fram Strait from 1992 to 2014. J. Geophys. Res. Oceans, 125, e2019JC016039, https://doi.org/10.1029/2019JC016039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and Coauthors, 2017: Global climatologies of Eulerian and Lagrangian flow features based on ERA-Interim. Bull. Amer. Meteor. Soc., 98, 17391748, https://doi.org/10.1175/BAMS-D-15-00299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., J. Zhang, and W. Ermold, 2010: Mechanisms of summertime upper Arctic Ocean warming and the effect on sea ice melt. J. Geophys. Res., 115, C11004, https://doi.org/10.1029/2009JC005849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., W. Ermold, and J. Zhang, 2011: Modeling the formation and fate of the near-surface temperature maximum in the Canadian Basin of the Arctic Ocean. J. Geophys. Res., 116, C11015, https://doi.org/10.1029/2010JC006803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. D. Doyle, N. P. Barton, P. M. Finocchio, W. A. Komaromi, and E. J. Metzger, 2020: The impact of an intense cyclone on short-term sea ice loss in a fully coupled atmosphere–ocean–ice model. Geophys. Res. Lett., 47, e2019GL085580, https://doi.org/10.1029/2019GL085580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., 2015: The impact of stored solar heat on Arctic sea ice growth. Geophys. Res. Lett., 42, 63996406, https://doi.org/10.1002/2015GL064541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., R. A. Krishfield, M.-L. Timmermans, and A. Proshutinsky, 2011: The ice-tethered profiler: Argo of the Arctic. Oceanography, 24, 126135, https://doi.org/10.5670/oceanog.2011.64.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tschudi, M. A., W. N. Meier, and J. S. Stewart, 2020: An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC). Cryosphere, 14, 15191536, https://doi.org/10.5194/tc-14-1519-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vessey, A. F., K. I. Hodges, L. C. Shaffrey, and J. J. Day, 2020: An inter-comparison of Arctic synoptic scale storms between four global reanalysis datasets. Climate Dyn., 54, 27772795, https://doi.org/10.1007/s00382-020-05142-4.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., J. Walsh, S. Szymborski, and M. Peng, 2020: Rapid Arctic sea ice loss on the synoptic time scale and related atmospheric circulation anomalies. J. Climate, 33, 15971617, https://doi.org/10.1175/JCLI-D-19-0528.1.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and L. Papritz, 2018: Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting. Nat. Geosci., 11, 108113, https://doi.org/10.1038/s41561-017-0041-0.

    • Search Google Scholar
    • Export Citation
  • Woods, C., and R. Caballero, 2016: The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate, 29, 44734485, https://doi.org/10.1175/JCLI-D-15-0773.1.

    • Search Google Scholar
    • Export Citation
  • Zahn, M., M. Akperov, A. Rinke, F. Feser, and I. I. Mokhov, 2018: Trends of cyclone characteristics in the Arctic and their patterns from different reanalysis data. J. Geophys. Res. Atmos., 123, 27372751, https://doi.org/10.1002/2017JD027439.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Lindsay, A. Schweiger, and M. Steele, 2013: The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophys. Res. Lett., 40, 720726, https://doi.org/10.1002/grl.50190.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., A. Sorteberg, J. Zhang, R. Gerdes, and J. C. Comiso, 2008: Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett., 35, L22701, https://doi.org/10.1029/2008GL035607.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 656 656 80
Full Text Views 216 216 21
PDF Downloads 247 247 30

Accelerated Sea Ice Loss from Late Summer Cyclones in the New Arctic

Peter M. FinocchioaU.S. Naval Research Laboratory, Monterey, California

Search for other papers by Peter M. Finocchio in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3987-6224
,
James D. DoyleaU.S. Naval Research Laboratory, Monterey, California

Search for other papers by James D. Doyle in
Current site
Google Scholar
PubMed
Close
, and
Daniel P. SternbUniversity Corporation for Atmospheric Research, Monterey, California

Search for other papers by Daniel P. Stern in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Synoptic-scale cyclones in the Arctic are an important source of short-term sea ice variability during the melt season. This study examines whether recent changes to the Arctic environment have made Arctic cyclones during the summer months more destructive to sea ice on short time scales. We compare the 1–7-day changes in sea ice area and thickness following days in each month with and without cyclones from two decades: 1991–2000 and 2009–18. Only in August do cyclones locally accelerate seasonal sea ice loss on average, and the ability of August cyclones to accelerate ice loss has become more pronounced in the recent decade. The recent increase in ice loss following August cyclones is most evident in the Amerasian Arctic (140°E–120°W), where reanalyses indicate that the average upper-ocean temperature has increased by 0.2°–0.8°C and the average ice thickness has decreased by almost 1 m between the two decades. Such changes promote cyclone-induced ocean mixing and sea ice divergence that locally increase the likelihood for rapid ice loss near cyclones. In contrast, June cyclones in both decades locally slow down seasonal sea ice loss. Moreover, the 7-day sea ice loss in June has increased from the early to the recent decade by 67% more in the absence of cyclones than in the presence of cyclones. The largest increases in June ice loss occur in the Eurasian Arctic (0°–140°E), where substantial reductions in average surface albedo in the recent decade have allowed more of the abundant insolation in the absence of cyclones to be absorbed at the sea surface.

Significance Statement

This study determines whether Arctic storms during summer have become more destructive to sea ice in recent years. In comparing storms from two periods (1991–2000 vs 2009–18), we find that only storms in August have become more destructive to sea ice in the recent period, because of warmer upper-ocean temperatures and thinner ice, which strong winds move around more easily. In June, clear-sky conditions have become more destructive to sea ice in recent years because declining ice cover has allowed more sunlight to be absorbed at the sea surface, favoring further ice melt. These results suggest that sunny conditions in June followed by stormy conditions in August could cause the first ice-free summer in the Arctic.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peter M. Finocchio, peter.finocchio@nrlmry.navy.mil

Abstract

Synoptic-scale cyclones in the Arctic are an important source of short-term sea ice variability during the melt season. This study examines whether recent changes to the Arctic environment have made Arctic cyclones during the summer months more destructive to sea ice on short time scales. We compare the 1–7-day changes in sea ice area and thickness following days in each month with and without cyclones from two decades: 1991–2000 and 2009–18. Only in August do cyclones locally accelerate seasonal sea ice loss on average, and the ability of August cyclones to accelerate ice loss has become more pronounced in the recent decade. The recent increase in ice loss following August cyclones is most evident in the Amerasian Arctic (140°E–120°W), where reanalyses indicate that the average upper-ocean temperature has increased by 0.2°–0.8°C and the average ice thickness has decreased by almost 1 m between the two decades. Such changes promote cyclone-induced ocean mixing and sea ice divergence that locally increase the likelihood for rapid ice loss near cyclones. In contrast, June cyclones in both decades locally slow down seasonal sea ice loss. Moreover, the 7-day sea ice loss in June has increased from the early to the recent decade by 67% more in the absence of cyclones than in the presence of cyclones. The largest increases in June ice loss occur in the Eurasian Arctic (0°–140°E), where substantial reductions in average surface albedo in the recent decade have allowed more of the abundant insolation in the absence of cyclones to be absorbed at the sea surface.

Significance Statement

This study determines whether Arctic storms during summer have become more destructive to sea ice in recent years. In comparing storms from two periods (1991–2000 vs 2009–18), we find that only storms in August have become more destructive to sea ice in the recent period, because of warmer upper-ocean temperatures and thinner ice, which strong winds move around more easily. In June, clear-sky conditions have become more destructive to sea ice in recent years because declining ice cover has allowed more sunlight to be absorbed at the sea surface, favoring further ice melt. These results suggest that sunny conditions in June followed by stormy conditions in August could cause the first ice-free summer in the Arctic.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peter M. Finocchio, peter.finocchio@nrlmry.navy.mil

Supplementary Materials

    • Supplemental Materials (PDF 795 KB)
Save