Network-Based Approach and Climate Change Benefits for Forecasting the Amount of Indian Monsoon Rainfall

Jingfang Fan aSchool of Systems Science, Beijing Normal University, Beijing, China
bPotsdam Institute for Climate Impact Research, Potsdam, Germany

Search for other papers by Jingfang Fan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1954-4641
,
Jun Meng cSchool of Sciences, Beijing University of Posts and Telecommunications, Beijing, China
bPotsdam Institute for Climate Impact Research, Potsdam, Germany

Search for other papers by Jun Meng in
Current site
Google Scholar
PubMed
Close
,
Josef Ludescher bPotsdam Institute for Climate Impact Research, Potsdam, Germany

Search for other papers by Josef Ludescher in
Current site
Google Scholar
PubMed
Close
,
Zhaoyuan Li dSchool of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China

Search for other papers by Zhaoyuan Li in
Current site
Google Scholar
PubMed
Close
,
Elena Surovyatkina bPotsdam Institute for Climate Impact Research, Potsdam, Germany
eSpace Research Institute of Russian Academy of Sciences, Space Dynamics and Data Analysis Department, Moscow, Russian Federation

Search for other papers by Elena Surovyatkina in
Current site
Google Scholar
PubMed
Close
,
Xiaosong Chen aSchool of Systems Science, Beijing Normal University, Beijing, China

Search for other papers by Xiaosong Chen in
Current site
Google Scholar
PubMed
Close
,
Jürgen Kurths bPotsdam Institute for Climate Impact Research, Potsdam, Germany

Search for other papers by Jürgen Kurths in
Current site
Google Scholar
PubMed
Close
, and
Hans Joachim Schellnhuber bPotsdam Institute for Climate Impact Research, Potsdam, Germany

Search for other papers by Hans Joachim Schellnhuber in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Despite the development of sophisticated statistical and dynamical climate models, a relative long-term and reliable prediction of the Indian summer monsoon rainfall (ISMR) has remained a challenging problem. Toward achieving this goal, here we construct a series of dynamical and physical climate networks based on the global near-surface air temperature field. We show that some characteristics of the directed and weighted climate networks can serve as efficient long-term predictors for ISMR forecasting. The developed prediction method produces a forecasting skill of 0.54 (Pearson correlation) with a 5-month lead time by using the previous calendar year’s data. The skill of our ISMR forecast is better than that of operational forecasts models, which have, however, quite a short lead time. We discuss the underlying mechanism of our predictor and associate it with network–ENSO and ENSO–monsoon connections. Moreover, our approach allows predicting the all-India rainfall, as well as the rainfall different homogeneous Indian regions, which is crucial for agriculture in India. We reveal that global warming affects the climate network by enhancing cross-equatorial teleconnections between the southwest Atlantic, the western part of the Indian Ocean, and the North Asia–Pacific region, with significant impacts on the precipitation in India. A stronger connection through the chain of the main atmospheric circulations patterns benefits the prediction of the amount of rainfall. We uncover a hotspot area in the midlatitude South Atlantic, which is the basis for our predictor, the southwest Atlantic subtropical index (SWAS index). Remarkably, the significant warming trend in this area yields an improvement of the prediction skill.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Jingfang Fan, jingfang@bnu.edu.cn; Jun Meng, junmeng@bupt.edu.cn

Abstract

Despite the development of sophisticated statistical and dynamical climate models, a relative long-term and reliable prediction of the Indian summer monsoon rainfall (ISMR) has remained a challenging problem. Toward achieving this goal, here we construct a series of dynamical and physical climate networks based on the global near-surface air temperature field. We show that some characteristics of the directed and weighted climate networks can serve as efficient long-term predictors for ISMR forecasting. The developed prediction method produces a forecasting skill of 0.54 (Pearson correlation) with a 5-month lead time by using the previous calendar year’s data. The skill of our ISMR forecast is better than that of operational forecasts models, which have, however, quite a short lead time. We discuss the underlying mechanism of our predictor and associate it with network–ENSO and ENSO–monsoon connections. Moreover, our approach allows predicting the all-India rainfall, as well as the rainfall different homogeneous Indian regions, which is crucial for agriculture in India. We reveal that global warming affects the climate network by enhancing cross-equatorial teleconnections between the southwest Atlantic, the western part of the Indian Ocean, and the North Asia–Pacific region, with significant impacts on the precipitation in India. A stronger connection through the chain of the main atmospheric circulations patterns benefits the prediction of the amount of rainfall. We uncover a hotspot area in the midlatitude South Atlantic, which is the basis for our predictor, the southwest Atlantic subtropical index (SWAS index). Remarkably, the significant warming trend in this area yields an improvement of the prediction skill.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Jingfang Fan, jingfang@bnu.edu.cn; Jun Meng, junmeng@bupt.edu.cn

Supplementary Materials

    • Supplemental Materials (pdf 9.41 MB)
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albert, R., and A. L. Barabási, 2002: Statistical mechanics of complex networks. Rev. Mod. Phys., 74, 4797, https://doi.org/10.1103/RevModPhys.74.47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans, 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barabási, A.-L., and R. Albert, 1999: Emergence of scaling in random networks. Science, 286, 509512, https://doi.org/10.1126/science.286.5439.509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blondel, V. D., J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, 2008: Fast unfolding of communities in large networks. J. Stat. Mech., 2008, P10008, https://doi.org/10.1088/1742-5468/2008/10/P10008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, S., V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, 2006: Complex networks: Structure and dynamics. Phys. Rep., 424, 175308, https://doi.org/10.1016/j.physrep.2005.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, N., B. Goswami, A. Rheinwalt, B. Bookhagen, B. Hoskins, and J. Kurths, 2019: Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature, 566, 373377, https://doi.org/10.1038/s41586-018-0872-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clauset, A., C. Moore, and M. E. J. Newman, 2008: Hierarchical structure and the prediction of missing links in networks. Nature, 453, 98101, https://doi.org/10.1038/nature06830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clauset, A., S. Arbesman, and D. B. Larremore, 2015: Systematic inequality and hierarchy in faculty hiring networks. Sci. Adv., 1, e1400005, https://doi.org/10.1126/sciadv.1400005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, R., and S. Havlin, 2010: Complex Networks: Structure, Robustness and Function. Cambridge University Press, 247 pp.

    • Crossref
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DelSole, T., and J. Shukla, 2009: Artificial skill due to predictor screening. J. Climate, 22, 331345, https://doi.org/10.1175/2008JCLI2414.1.

  • DelSole, T., and J. Shukla, 2012: Climate models produce skillful predictions of Indian summer monsoon rainfall. Geophys. Res. Lett., 39, L09703, https://doi.org/10.1029/2012GL051279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Capua, G., and Coauthors, 2019: Long-lead statistical forecasts of the Indian summer monsoon rainfall based on causal precursors. Wea. Forecasting, 34, 13771394, https://doi.org/10.1175/WAF-D-19-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, W., and C. Wei, 2013: The ‘spring predictability barrier’ for ENSO predictions and its possible mechanism: Results from a fully coupled model. Int. J. Climatol., 33, 12801292, https://doi.org/10.1002/joc.3513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., J. Meng, Y. Ashkenazy, S. Havlin, and H. J. Schellnhuber, 2017: Network analysis reveals strongly localized impacts of El Niño. Proc. Natl. Acad. Sci. USA, 114, 75437548, https://doi.org/10.1073/pnas.1701214114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., J. Meng, Y. Ashkenazy, S. Havlin, and H. J. Schellnhuber, 2018: Climate network percolation reveals the expansion and weakening of the tropical component under global warming. Proc. Natl. Acad. Sci. USA, 115, E12 128E12 134, https://doi.org/10.1073/pnas.1811068115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., J. Meng, J. Ludescher, X. Chen, Y. Ashkenazy, J. Kurths, S. Havlin, and H. J. Schellnhuber, 2021: Statistical physics approaches to the complex Earth system. Phys. Rep., 896, 184, https://doi.org/10.1016/j.physrep.2020.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Q. Y., and Coauthors, 2016: ClimateLearn: A machine-learning approach for climate prediction using network measures. Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2015-273.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 1179, https://doi.org/10.1126/science.1125566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., and J. Srinivasan, 2011: Seasonal prediction of the Indian monsoon. Curr. Sci., 100, 343353, https://www.ecmwf.int/sites/default/files/elibrary/2013/9480-seasonal-prediction-indian-summer-monsoon-science-and-applications.pdf.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., M. Rajeevan, and R. Nanjundiah, 2005: Monsoon prediction—Why yet another failure? Curr. Sci., 88, 13891400, https://www.jstor.org/stable/24110705.

    • Search Google Scholar
    • Export Citation
  • Gozolchiani, A., S. Havlin, and K. Yamasaki, 2011: Emergence of El Niño as an autonomous component in the climate network. Phys. Rev. Lett., 107, 148501, https://doi.org/10.1103/PhysRevLett.107.148501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guez, O. C., A. Gozolchiani, and S. Havlin, 2014: Influence of autocorrelation on the topology of the climate network. Phy. Rev. E, 90, 062814, https://doi.org/10.1103/PhysRevE.90.062814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulati, A., P. Rajkhowa, and P. Sharma, 2017: Making rapid strides—Agriculture in Madhya Pradesh: Sources, drivers, and policy lessons. Indian Council for Research on International Economic Relations, Working Paper 339, 62 pp., https://www.researchgate.net/publication/320386803_Making_Rapid_Strides-Agriculture_in_Madhya_Pradesh_Sources_Drivers_and_Policy_Lessons.

  • Ham, Y.-G., J.-H. Kim, and J.-J. Luo, 2019: Deep learning for multi-year ENSO forecasts. Nature, 573, 568572, https://doi.org/10.1038/s41586-019-1559-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2018: Cross-equatorial winds control El Niño diversity and change. Nat. Climate Change, 8, 798802, https://doi.org/10.1038/s41558-018-0248-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., and V. Krishnamurthy, 2014: Decadal scale oscillations and trend in the Indian monsoon rainfall. Climate Dyn., 43, 319331, https://doi.org/10.1007/s00382-013-1870-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., B. Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 21562159, https://doi.org/10.1126/science.284.5423.2156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeCun, Y., Y. Bengio, and G. Hinton, 2015: Deep learning. Nature, 521, 436444, https://doi.org/10.1038/nature14539.

  • Leduc, R., and R. Gervais, 1984: Connaître la Météorologie. University of Quebec Press, 305 pp.

    • Crossref
    • Export Citation
  • Li, G., S.-P. Xie, C. He, and Z. Chen, 2017: Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nat. Climate Change, 7, 708712, https://doi.org/10.1038/nclimate3387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Ludescher, J., A. Gozolchiani, M. I. Bogachev, A. Bunde, S. Havlin, and H. J. Schellnhuber, 2013: Improved El Niño forecasting by cooperativity detection. Proc. Natl. Acad. Sci. USA, 110, 11 74211 745, https://doi.org/10.1073/pnas.1309353110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masuda, N., M. A. Porter, and R. Lambiotte, 2017: Random walks and diffusion on networks. Phys. Rep., 716–717, 158, https://doi.org/10.1016/j.physrep.2017.07.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, J., J. Fan, Y. Ashkenazy, A. Bunde, and S. Havlin, 2018: Forecasting the magnitude and onset of El Niño based on climate network. New J. Phys., 20, 043036, https://doi.org/10.1088/1367-2630/aabb25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424, https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., 2010: Networks: An Introduction. Oxford University Press, 784 pp.

  • Petersik, P. J., and H. A. Dijkstra, 2020: Probabilistic forecasting of El Niño using neural network models. Geophys. Res. Lett., 47, e2019GL086423, https://doi.org/10.1029/2019GL086423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quian Quiroga, R., T. Kreuz, and P. Grassberger, 2002: Event synchronization: A simple and fast method to measure synchronicity and time delay patterns. Phys. Rev. E, 66, 041904, https://doi.org/10.1103/PhysRevE.66.041904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., 2001: Prediction of Indian summer monsoon: Status, problems and prospects. Curr. Sci., 81, 14511458, https://www.jstor.org/stable/24106570.

    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., and D. S. Pai, 2007: On the El Niño–Indian monsoon predictive relationships. Geophys. Res. Lett., 34, L04704, https://doi.org/10.1029/2006GL028916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., D. S. Pai, R. Anil Kumar, and B. Lal, 2007: New statistical models for long-range forecasting of southwest monsoon rainfall over India. Climate Dyn., 28, 813828, https://doi.org/10.1007/s00382-006-0197-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., C. K. Unnikrishnan, and B. Preethi, 2012: Evaluation of the ENSEMBLES multi-model seasonal forecasts of Indian summer monsoon variability. Climate Dyn., 38, 22572274, https://doi.org/10.1007/s00382-011-1061-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramu, D. A. , and Coauthors, 2016: Indian summer monsoon rainfall simulation and prediction skill in the CFSv2 coupled model: Impact of atmospheric horizontal resolution. J. Geophys. Res. Atmos., 121, 22052221, https://doi.org/10.1002/2015JD024629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and Prabhat, 2019: Deep learning and process understanding for data-driven Earth system science. Nature, 566, 195204, https://doi.org/10.1038/s41586-019-0912-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohden, M., A. Sorge, M. Timme, and D. Witthaut, 2012: Self-organized synchronization in decentralized power grids. Phys. Rev. Lett., 109, 064101, https://doi.org/10.1103/PhysRevLett.109.064101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, M., P. Mitra, and R. S. Nanjundiah, 2017: Deep learning for predicting the monsoon over the homogeneous regions of India. J. Earth Syst. Sci., 126, 54, https://doi.org/10.1007/s12040-017-0838-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, D. F., and K. M. Grise, 2017: The response of local precipitation and sea level pressure to Hadley cell expansion. Geophys. Res. Lett., 44, 10 57310 582, https://doi.org/10.1002/2017GL075380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., D. M. W. Frierson, and J.-H. Son, 2014: A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophys. Res. Lett., 41, 52515258, https://doi.org/10.1002/2014GL060868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., and D. A. Mooley, 1987: Empirical prediction of the summer monsoon rainfall over India. Mon. Wea. Rev., 115, 695704, https://doi.org/10.1175/1520-0493(1987)115<0695:EPOTSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, Y., Y. Kosaka, M. Watanabe, and S. Maeda, 2021: Skilful predictions of the Asian summer monsoon one year ahead. Nat. Commun., 12, 2094, https://doi.org/10.1038/s41467-021-22299-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsonis, A. A., and P. J. Roebber, 2004: The architecture of the climate network. Physica A, 333, 497504, https://doi.org/10.1016/j.physa.2003.10.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsonis, A. A., K. L. Swanson, and P. J. Roebber, 2006: What do networks have to do with climate? Bull. Amer. Meteor. Soc., 87, 585596, https://doi.org/10.1175/BAMS-87-5-585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., B. Xiang, J. Li, P. J. Webster, M. N. Rajeevan, J. Liu, and K.-J. Ha, 2015: Rethinking Indian monsoon rainfall prediction in the context of recent global warming. Nat. Commun., 6, 7154, https://doi.org/10.1038/ncomms8154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watts, D. J., and S. H. Strogatz, 1998: Collective dynamics of ‘small-world’ networks. Nature, 393, 440442, https://doi.org/10.1038/30918.

  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, https://doi.org/10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magaña, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res. Oceans, 103, 14 45114 510, https://doi.org/10.1029/97JC02719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamasaki, K., A. Gozolchiani, and S. Havlin, 2008: Climate networks around the globe are significantly affected by El Niño. Phys. Rev. Lett., 100, 228501, https://doi.org/10.1103/PhysRevLett.100.228501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., T. Nishikawa, and A. E. Motter, 2017: Small vulnerable sets determine large network cascades in power grids. Science, 358, eaan3184, https://doi.org/10.1126/science.aan3184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, D., A. Gozolchiani, Y. Ashkenazy, and S. Havlin, 2015: Teleconnection paths via climate network direct link detection. Phys. Rev. Lett., 115, 268501, https://doi.org/10.1103/PhysRevLett.115.268501.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 929 177 0
Full Text Views 3637 3429 101
PDF Downloads 734 463 82