Sixfold Increase in Historical Northern Hemisphere Concurrent Large Heatwaves Driven by Warming and Changing Atmospheric Circulations

Cassandra D. W. Rogers aWashington State University, Vancouver, Washington

Search for other papers by Cassandra D. W. Rogers in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3752-7378
,
Kai Kornhuber bEarth Institute, Columbia University, New York, New York
cLamont-Doherty Earth Observatory, New York, New York

Search for other papers by Kai Kornhuber in
Current site
Google Scholar
PubMed
Close
,
Sarah E. Perkins-Kirkpatrick dUniversity of New South Wales, Canberra, Australian Capital Territory, Australia
eARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia

Search for other papers by Sarah E. Perkins-Kirkpatrick in
Current site
Google Scholar
PubMed
Close
,
Paul C. Loikith fPortland State University, Portland, Oregon

Search for other papers by Paul C. Loikith in
Current site
Google Scholar
PubMed
Close
, and
Deepti Singh aWashington State University, Vancouver, Washington

Search for other papers by Deepti Singh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Simultaneous heatwaves affecting multiple regions (referred to as concurrent heatwaves) pose compounding threats to various natural and societal systems, including global food chains, emergency response systems, and reinsurance industries. While anthropogenic climate change is increasing heatwave risks across most regions, the interactions between warming and circulation changes that yield concurrent heatwaves remain understudied. Here, we quantify historical (1979–2019) trends in concurrent heatwaves during the warm season [May–September (MJJAS)] across the Northern Hemisphere mid- to high latitudes. We find a significant increase of ∼46% in the mean spatial extent of concurrent heatwaves and ∼17% increase in their maximum intensity, and an approximately sixfold increase in their frequency. Using self-organizing maps, we identify large-scale circulation patterns (300 hPa) associated with specific concurrent heatwave configurations across Northern Hemisphere regions. We show that observed changes in the frequency of specific circulation patterns preferentially increase the risk of concurrent heatwaves across particular regions. Patterns linking concurrent heatwaves across eastern North America, eastern and northern Europe, parts of Asia, and the Barents and Kara Seas show the largest increases in frequency (∼5.9 additional days per decade). We also quantify the relative contributions of circulation pattern changes and warming to overall observed concurrent heatwave day frequency trends. While warming has a predominant and positive influence on increasing concurrent heatwave frequency, circulation pattern changes have a varying influence and account for up to 0.8 additional concurrent heatwave days per decade. Identifying regions with an elevated risk of concurrent heatwaves and understanding their drivers is indispensable for evaluating projected climate risks on interconnected societal systems and fostering regional preparedness in a changing climate.

Significance Statement

Heatwaves pose a major threat to human health, ecosystems, and human systems. Simultaneous heatwaves affecting multiple regions can exacerbate such threats. For example, multiple food-producing regions simultaneously undergoing heat-related crop damage could drive global food shortages. We assess recent changes in the occurrence of simultaneous large heatwaves. Such simultaneous heatwaves are 7 times more likely now than 40 years ago. They are also hotter and affect a larger area. Their increasing occurrence is mainly driven by warming baseline temperatures due to global heating, but changes in weather patterns contribute to disproportionate increases over parts of Europe, the eastern United States, and Asia. Better understanding the drivers of weather pattern changes is therefore important for understanding future concurrent heatwave characteristics and their impacts.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cassandra Rogers, cassandra.rogers@wsu.edu

Abstract

Simultaneous heatwaves affecting multiple regions (referred to as concurrent heatwaves) pose compounding threats to various natural and societal systems, including global food chains, emergency response systems, and reinsurance industries. While anthropogenic climate change is increasing heatwave risks across most regions, the interactions between warming and circulation changes that yield concurrent heatwaves remain understudied. Here, we quantify historical (1979–2019) trends in concurrent heatwaves during the warm season [May–September (MJJAS)] across the Northern Hemisphere mid- to high latitudes. We find a significant increase of ∼46% in the mean spatial extent of concurrent heatwaves and ∼17% increase in their maximum intensity, and an approximately sixfold increase in their frequency. Using self-organizing maps, we identify large-scale circulation patterns (300 hPa) associated with specific concurrent heatwave configurations across Northern Hemisphere regions. We show that observed changes in the frequency of specific circulation patterns preferentially increase the risk of concurrent heatwaves across particular regions. Patterns linking concurrent heatwaves across eastern North America, eastern and northern Europe, parts of Asia, and the Barents and Kara Seas show the largest increases in frequency (∼5.9 additional days per decade). We also quantify the relative contributions of circulation pattern changes and warming to overall observed concurrent heatwave day frequency trends. While warming has a predominant and positive influence on increasing concurrent heatwave frequency, circulation pattern changes have a varying influence and account for up to 0.8 additional concurrent heatwave days per decade. Identifying regions with an elevated risk of concurrent heatwaves and understanding their drivers is indispensable for evaluating projected climate risks on interconnected societal systems and fostering regional preparedness in a changing climate.

Significance Statement

Heatwaves pose a major threat to human health, ecosystems, and human systems. Simultaneous heatwaves affecting multiple regions can exacerbate such threats. For example, multiple food-producing regions simultaneously undergoing heat-related crop damage could drive global food shortages. We assess recent changes in the occurrence of simultaneous large heatwaves. Such simultaneous heatwaves are 7 times more likely now than 40 years ago. They are also hotter and affect a larger area. Their increasing occurrence is mainly driven by warming baseline temperatures due to global heating, but changes in weather patterns contribute to disproportionate increases over parts of Europe, the eastern United States, and Asia. Better understanding the drivers of weather pattern changes is therefore important for understanding future concurrent heatwave characteristics and their impacts.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cassandra Rogers, cassandra.rogers@wsu.edu

Supplementary Materials

    • Supplemental Materials (pdf 6.86 MB)
Save
  • Australian Bureau of Meteorology, 2020: About the heatwave service. Accessed 18 June 2020, http://www.bom.gov.au/australia/heatwave/knowledge-centre/heatwave-service.shtml.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev.: Climate Change, 6, 277286, https://doi.org/10.1002/wcc.337.

    • Search Google Scholar
    • Export Citation
  • Caesar, L., S. Rahmstorf, A. Robinson, G. Feulner, and V. Saba, 2018: Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556, 191196, https://doi.org/10.1038/s41586-018-0006-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., P. Uotila, A. H. Lynch, and E. N. Cassano, 2007: Predicted changes in synoptic forcing of net precipitation in large Arctic river basins during the 21st century. J. Geophys. Res., 112, G04S49, https://doi.org/10.1029/2006JG000332.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., L. Terray, and A. S. Phillips, 2005: Tropical Atlantic influence on European heat waves. J. Climate, 18, 28052811, https://doi.org/10.1175/JCLI3506.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., Y. Peings, D. Saint-Martin, N. Trou-Kechout, and S. J. Vavrus, 2016: Sinuosity of midlatitude atmospheric flow in a warming world. Geophys. Res. Lett., 43, 82598268, https://doi.org/10.1002/2016GL070309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 2029, https://doi.org/10.1038/s41558-019-0662-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 10291136.

    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2021a: ERA5 hourly data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 2021, https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview.

    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service, 2021b: ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 2021, https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview.

    • Search Google Scholar
    • Export Citation
  • Coumou, D., V. Petoukhov, S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2014: Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc. Natl. Acad. Sci. USA, 111, 12 33112 336, https://doi.org/10.1073/pnas.1412797111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., J. Lehmann, J. Beckmann, 2015: The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science, 348, 324327, https://doi.org/10.1126/science.1261768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., G. Di Capua, S. Vavrus, L. Wang, and S. Wang, 2018: The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun., 9, 2959, https://doi.org/10.1038/s41467-018-05256-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchez, A., and Coauthors, 2016: Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Environ. Res. Lett., 11, 074004, https://doi.org/10.1088/1748-9326/11/7/074004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fatichi, S., 2020: Mann-Kendall test. MATLAB Central File Exchange, accessed 30 September 2020, https://www.mathworks.com/matlabcentral/fileexchange/25531-mann-kendall-test.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, https://doi.org/10.1175/JCLI4288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., 2017: Why are Arctic linkages to extreme weather still up in the air? Bull. Amer. Meteor. Soc., 98, 25512557, https://doi.org/10.1175/BAMS-D-17-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., S. J. Vavrus, and J. Cohen, 2017: Amplified Arctic warming and mid-latitude weather: New perspectives on emerging connections. Wiley Interdiscip. Rev. Climate Change, 8, e74, https://doi.org/10.1002/wcc.474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganguly, A. R., K. Steinhaeuser, D. J. Erickson, M. Branstetter, E. S. Parish, N. Singh, J. B. Drake, and L. Buja, 2009: Higher trends but larger uncertainty and geographic variability in 21st century temperature and heat waves. Proc. Natl. Acad. Sci. USA, 106, 15 55515 559, https://doi.org/10.1073/pnas.0904495106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, M., Y. Yang, H. Shi, and Z. Gao, 2019: SOM-based synoptic analysis of atmospheric circulation patterns and temperature anomalies in China. Atmos. Res., 220, 4656, https://doi.org/10.1016/j.atmosres.2019.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaupp, F., J. Hall, S. Hochrainer-Stigler, and S. Dadson, 2020: Changing risks of simultaneous global breadbasket failure. Nat. Climate Change, 10, 5457, https://doi.org/10.1038/s41558-019-0600-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gervais, M., J. Shaman, and Y. Kushnir, 2020: Impact of the North Atlantic warming hole on sensible weather. J. Climate, 33, 42554271, https://doi.org/10.1175/JCLI-D-19-0636.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, P. B., P. Uotila, S. E. Perkins-Kirkpatrick, L. V. Alexander, and A. J. Pitman, 2016: Evaluating synoptic systems in the CMIP5 climate models over the Australian region. Climate Dyn., 47, 22352251, https://doi.org/10.1007/s00382-015-2961-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greene, C. A., and Coauthors, 2019: The climate data toolbox for MATLAB. Geochem. Geophys. Geosyst., 20, 37743781, https://doi.org/10.1029/2019GC008392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassanzadeh, P., C. Y. Lee, E. Nabizadeh, S. J. Camargo, D. Ma, and L. Y. Yeung, 2020: Effects of climate change on the movement of future landfalling Texas tropical cyclones. Nat. Commun., 11, 3319, https://doi.org/10.1038/s41467-020-17130-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennermann, K., 2020: ERA5: Data documentation. ECMWF, accessed 17 February 2020, https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation.

    • Search Google Scholar
    • Export Citation
  • Herold, N., J. Kala, and L. V. Alexander, 2016: The influence of soil moisture deficits on Australian heatwaves. Environ. Res. Lett., 11, 064003, https://doi.org/10.1088/1748-9326/11/6/064003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, No. 159, ECMWF, Reading, United Kingdom, 17–24, https://www.ecmwf.int/node/19027.

    • Search Google Scholar
    • Export Citation
  • Hoegh-Guldberg, O., and Coauthors, 2018: Impacts of 1.5°C global warming on natural and human systems. Global Warming of 1.5°C, V. Masson-Delmotte, Eds., IPCC, 175311.

    • Search Google Scholar
    • Export Citation
  • Horton, D. E., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. S. Diffenbaugh, 2015: Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465469, https://doi.org/10.1038/nature14550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 129.

    • Search Google Scholar
    • Export Citation
  • Jiang, N., K. Cheung, K. Luo, P. J. Beggs, and W. Zhou, 2012: On two different objective procedures for classifying synoptic weather types over east Australia. Int. J. Climatol., 32, 14751494, https://doi.org/10.1002/joc.2373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, N., K. Luo, P. J. Beggs, K. Cheung, and Y. Scorgie, 2015: Insights into the implementation of synoptic weather-type classification using self-organizing maps: An Australian case study. Int. J. Climatol., 35, 34713485, https://doi.org/10.1002/joc.4221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 2014: MATLAB Implementations and Applications of the Self-Organizing Map. Unigrafia Oy, 201 pp.

  • Kornhuber, K., and T. Tamarin‐Brodsky, 2021: Future changes in Northern Hemisphere summer weather persistence linked to projected Arctic warming. Geophys. Res. Lett., 48, https://doi.org/10.1029/2020GL091603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., S. Osprey, D. Coumou, S. Petri, V. Petoukhov, S. Rahmstorf, and L. Gray, 2019: Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett., 14, 054002, https://doi.org/10.1088/1748-9326/ab13bf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., D. Coumou, E. Vogel, C. Lesk, J. F. Donges, J. Lehmann, and R. M. Horton, 2020: Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Climamte Change, 10, 4853, https://doi.org/10.1038/s41558-019-0637-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, https://doi.org/10.1175/JHM510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laboratory of Computer and Information Science, 2009: SOM Toolbox. Helsinki University of Technology, Laboratory of Computer and Information Science, accessed 2019, http://www.cis.hut.fi/projects/somtoolbox/.

    • Search Google Scholar
    • Export Citation
  • Lee, M. H., S. Lee, H. J. Song, and C. H. Ho, 2017: The recent increase in the occurrence of a boreal summer teleconnection and its relationship with temperature extremes. J. Climate, 30, 74937504, https://doi.org/10.1175/JCLI-D-16-0094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., C. Y. Tam, A. P. K. Tai, and N. C. Lau, 2021: Vegetation–heatwave correlations and contrasting energy exchange responses of different vegetation types to summer heatwaves in the Northern Hemisphere during the 1982–2011 period. Agric. For. Meteor., 296, 108208, https://doi.org/10.1016/j.agrformet.2020.108208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, and C. N. K. Mooers, 2006: Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res., 111, C05018, https://doi.org/10.1029/2005JC003117.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 72667281, https://doi.org/10.1175/JCLI-D-11-00709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., A. G. Barnston, E. Coffel, and R. M. Horton, 2019: Projected increase in the spatial extent of contiguous US summer heat waves and associated attributes. Environ. Res. Lett., 14, 114029, https://doi.org/10.1088/1748-9326/ab4b41.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Q., and C. L. E. Franzke, 2021: The role of transient eddies and diabatic heating in the maintenance of European heat waves: A nonlinear quasi-stationary wave perspective. Climate Dyn., 56, 29833002, https://doi.org/10.1007/s00382-021-05628-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., S. Rahmstorf, K. Kornhuber, B. A. Steinman, S. K. Miller, and D. Coumou, 2017: Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. Rep., 7, 45242, https://doi.org/10.1038/srep45242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., S. Rahmstorf, K. Kornhuber, B. A. Steinman, S. K. Miller, S. Petri, and D. Coumou, 2018: Projected changes in persistent extreme summer weather events: The role of quasi-resonant amplification. Sci. Adv., 4, eaat3272, https://doi.org/10.1126/sciadv.aat3272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McEvoy, D., I. Ahmed, and J. Mullett, 2012: The impact of the 2009 heat wave on Melbourne’s critical infrastructure. Local Environ., 17, 783796, https://doi.org/10.1080/13549839.2012.678320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKechnie, A. E., P. A. R. Hockey, and B. O. Wolf, 2012: Feeling the heat: Australian landbirds and climate change. Emu, 112, ivii, https://doi.org/10.1071/MUv112n2_ED.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, https://doi.org/10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mioduszewski, J. R., A. K. Rennermalm, A. Hammann, M. Tedesco, E. U. Noble, J. C. Stroeve, and T. L. Mote, 2016: Atmospheric drivers of Greenland surface melt revealed by self-organizing maps. J. Geophys. Res. Atmos., 121, 50955114, https://doi.org/10.1002/2015JD024550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nairn, J. R., and R. J. B. Fawcett, 2015: The excess heat factor: A metric for heatwave intensity and its use in classifying heatwave severity. Int. J. Environ. Res. Public Health, 12, 227253, https://doi.org/10.3390/ijerph120100227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 2020: Global temperature. Global climate change–Vital signs of the planet, NASA, accessed 26 May 2020, https://climate.nasa.gov/vital-signs/global-temperature/.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., C. Skinner, M. Loughnan, and N. Tapper, 2008: A simple heat alert system for Melbourne, Australia. Int. J. Biometeor., 52, 375384, https://doi.org/10.1007/s00484-007-0132-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., 2015: A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res., 164–165, 242267, https://doi.org/10.1016/j.atmosres.2015.05.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., L. V. Alexander, and J. R. Nairn, 2012: Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett., 39, L20714, https://doi.org/10.1029/2012GL053361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perkins-Kirkpatrick, S. E., and S. C. Lewis, 2020: Increasing trends in regional heatwaves. Nat. Commun., 11, 3357, https://doi.org/10.1038/s41467-020-16970-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., S. Petri, S. Rahmstorf, D. Coumou, K. Kornhuber, and H. J. Schellnhuber, 2016: Role of quasiresonant planetary wave dynamics in recent boreal spring-to-autumn extreme events. Proc. Natl. Acad. Sci. USA, 113, 68626867, https://doi.org/10.1073/pnas.1606300113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys. Res. Lett., 39, L12807, https://doi.org/10.1029/2012GL052261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfleiderer, P., C. F. Schleussner, K. Kornhuber, and D. Coumou, 2019: Summer weather becomes more persistent in a 2°C world. Nat. Climate Change, 9, 666671, https://doi.org/10.1038/s41558-019-0555-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, C., and Coauthors, 2020: Understanding and managing connected extreme events. Nat. Climate Change, 10, 611621, https://doi.org/10.1038/s41558-020-0790-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rebetez, M., O. Dupont, and M. Giroud, 2009: An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003. Theor. Appl. Climatol., 95 (1–2), 17, https://doi.org/10.1007/s00704-007-0370-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, C. D. W., A. J. E. Gallant, and N. J. Tapper, 2019: Is the urban heat island exacerbated during heatwaves in southern Australian cities? Theor. Appl. Climatol., 137, 441457, https://doi.org/10.1007/s00704-018-2599-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Röthlisberger, M., L. Frossard, L. F. Bosart, D. Keyser, and O. Martius, 2019: Recurrent synoptic-scale Rossby wave patterns and their effect on the persistence of cold and hot spells. J. Climate, 32, 32073226, https://doi.org/10.1175/JCLI-D-18-0664.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2014: Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Climate Change, 4, 704709, https://doi.org/10.1038/nclimate2271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, https://doi.org/10.1038/nature05095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field, Eds., Cambridge University Press, 109230, https://doi.org/10.2134/jeq2008.0015br.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharpe, L., B. Cale, and J. L. Gardner, 2019: Weighing the cost: The impact of serial heatwaves on body mass in a small Australian passerine. J. Avian Biol., 50, e02355, https://doi.org/10.1111/jav.02355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, https://doi.org/10.1038/ngeo2253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, D., D. L. Swain, J. S. Mankin, D. E. Horton, L. N. Thomas, B. Rajaratnam, and N. S. Diffenbaugh, 2016: Recent amplification of the North American winter temperature dipole. J. Geophys. Res. Atmos., 121, 99119928, https://doi.org/10.1002/2016JD025116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez-Gutierrez, L., W. A. Müller, C. Li, and J. Marotzke, 2020: Dynamical and thermodynamical drivers of variability in European summer heat extremes. Climate Dyn., 54, 43514366, https://doi.org/10.1007/s00382-020-05233-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sui, C., L. Yu, and T. Vihma, 2020: Occurrence and drivers of wintertime temperature extremes in Northern Europe during 1979–2016. Tellus, 72A, 1788368, https://doi.org/10.1080/16000870.2020.1788368.

    • Search Google Scholar
    • Export Citation
  • Swiss Re, 2019a: Natural catastrophes and man-made disasters in 2018: “Secondary” perils on the frontline. Sigma, 2, 36 pp., https://www.swissre.com/dam/jcr:c37eb0e4-c0b9-4a9f-9954-3d0bb4339bfd/sigma2_2019_en.pdf.

    • Search Google Scholar
    • Export Citation
  • Swiss Re, 2019b: Insurance in a world of climate extremes: What latest science tells us. Swiss Re, 8 pp., https://www.swissre.com/dam/jcr:f2ec0485-5732-4204-9a67-e754978fedbc/Insurance_climate_extremes_expertise_publication.pdf.

    • Search Google Scholar
    • Export Citation
  • Tan, X., S. Chen, T. Y. Gan, B. Liu, and X. Chen, 2019a: Dynamic and thermodynamic changes conducive to the increased occurrence of extreme spring fire weather over western Canada under possible anthropogenic climate change. Agric. For. Meteor., 265, 269279, https://doi.org/10.1016/j.agrformet.2018.11.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, X., T. Y. Gan, S. Chen, D. E. Horton, X. Chen, B. Liu, and K. Lin, 2019b: Trends in persistent seasonal-scale atmospheric circulation patterns responsible for seasonal precipitation totals and occurrences of precipitation extremes over Canada. J. Climate, 32, 71057126, https://doi.org/10.1175/JCLI-D-18-0408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2019: Amplification of waveguide teleconnections in the boreal summer. Curr. Climate Change Rep., 5, 421432, https://doi.org/10.1007/s40641-019-00150-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, C., A. Voulgarakis, G. Lim, J. Haigh, and P. Nowack, 2021: An unsupervised learning approach to identifying blocking events: the case of European summer. Wea. Climate Dyn., 2, 581608, https://doi.org/10.5194/wcd-2-581-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tigchelaar, M., D. S. Battisti, R. L. Naylor, and D. K. Ray, 2018: Future warming increases probability of globally synchronized maize production shocks. Proc. Natl. Acad. Sci. USA, 115, 66446649, https://doi.org/10.1073/pnas.1718031115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Velde, M., G. Wriedt, and F. Bouraoui, 2010: Estimating irrigation use and effects on maize yield during the 2003 heatwave in France. Agric. Ecosyst. Environ., 135, 9097, https://doi.org/10.1016/j.agee.2009.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vesanto, J., J. Himberg, E. Alhoniemi, and J. Parhankangas, 2000: SOM toolbox for Matlab 5. Tech. Rep. A57, 2 pp.

  • Vogel, M. M., J. Zscheischler, R. Wartenburger, D. Dee, and S. I. Seneviratne, 2019: Concurrent 2018 hot extremes across Northern Hemisphere due to human-induced climate change. Earth’s Future, 7, 692703, https://doi.org/10.1029/2019EF001189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, M. M., J. Zscheischler, E. M. Fischer, and S. I. Seneviratne, 2020: Development of future heatwaves for different hazard thresholds. J. Geophys. Res. Atmos., 125, https://doi.org/10.1029/2019JD032070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, L., J. Whiting, A. Watt, T. Hill, F. Wigg, G. Dunn, S. Needs, and E. W. R. Barlow, 2010: Managing grapevines through severe heat: A survey of growers after the 2009 summer heatwave in south-eastern Australia. J. Wine Res., 21, 147165, https://doi.org/10.1080/09571264.2010.530106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehrli, K., M. Hauser, and S. I. Seneviratne, 2020: Storylines of the 2018 Northern Hemisphere heatwave at pre-industrial and higher global warming levels. Earth Syst. Dyn., 11, 855873, https://doi.org/10.5194/esd-11-855-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., W. Wang, Q. Shao, Z. Yu, Z. Chen, Y. Huang, and W. Xing, 2020: Heat wave variations across China tied to global SST modes. J. Geophys. Res. Atmos., 125, e2019JD031612, https://doi.org/10.1029/2019JD031612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolf, G., A. Czaja, D. J. Brayshaw, and N. P. Klingaman, 2020: Connection between sea surface anomalies and atmospheric quasi-stationary waves. J. Climate, 33, 201212, https://doi.org/10.1175/JCLI-D-18-0751.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2011: Weather extremes in a changing climate: Hindsight on foresight. WMO 1075, 16 pp., https://library.wmo.int/?lvl=notice_display&id=4132.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2021: Updated 30-year reference period reflects changing climate. Accessed 7 May 2021, https://public.wmo.int/en/media/news/updated-30-year-reference-period-reflects-changing-climate.

    • Search Google Scholar
    • Export Citation
  • Wu, B., and J. A. Francis, 2019: Summer Arctic cold anomaly dynamically linked to East Asian heat waves. J. Climate, 32, 11371150, https://doi.org/10.1175/JCLI-D-18-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Z., G. FitzGerald, Y. Guo, B. Jalaludin, and S. Tong, 2016: Impact of heatwave on mortality under different heatwave definitions: A systematic review and meta-analysis. Environ. Int., 89–90, 193203, https://doi.org/10.1016/j.envint.2016.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., Q. Yang, T. Vihma, S. Jagovkina, J. Liu, Q. Sun, and Y. Li, 2018: Features of extreme precipitation at Progress Station, Antarctica. J. Climate, 31, 90879105, https://doi.org/10.1175/JCLI-D-18-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., C. Sun, J. Zhu, R. Zhang, and W. Li, 2020: Increased European heat waves in recent decades in response to shrinking Arctic sea ice and Eurasian snow cover. npj Climate Atmos. Sci., 3, 7, https://doi.org/10.1038/s41612-020-0110-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., P. Zhai, and Y. Chen, 2020: Contribution of changes in synoptic-scale circulation patterns to the past summer precipitation regime shift in Eastern China. Geophys. Res. Lett., 47, e2020GL087728, https://doi.org/10.1029/2020GL087728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., and Z. Wu, 2016: Possible impacts of mega‐El Niño/Southern Oscillation and Atlantic Multidecadal Oscillation on Eurasian heatwave frequency variability. Quart. J. Roy. Meteor. Soc., 142, 16471661, https://doi.org/10.1002/qj.2759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zscheischler, J., and Coauthors, 2018: Future climate risk from compound events. Nat. Climate Change, 8, 469477, https://doi.org/10.1038/s41558-018-0156-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 8579 910 0
Full Text Views 5141 4116 351
PDF Downloads 3065 2275 171