MJO Propagation over the Indian Ocean and Western Pacific in CMIP5 Models: Roles of Background States

Guiwan Chen aState Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Guiwan Chen in
Current site
Google Scholar
PubMed
Close
,
Jian Ling aState Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Jian Ling in
Current site
Google Scholar
PubMed
Close
,
Yuanwen Zhang aState Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Yuanwen Zhang in
Current site
Google Scholar
PubMed
Close
,
Xin Wang cState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
dSouthern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
eInnovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Xin Wang in
Current site
Google Scholar
PubMed
Close
, and
Chongyin Li aState Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Chongyin Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study explores the impacts of background states on the propagation of the Madden–Julian oscillation (MJO) in 24 CMIP5 models using a precipitation-based MJO tracking method. The ability of the model to reproduce the MJO propagation is reflected in the occurrence frequency of individual MJO events. Moisture budget analysis suggests that the occurrence frequencies of MJO events that propagate across the Indian Ocean (IO-MJO) and western Pacific (WP-MJO) in the models are mainly related to the low-level meridional moisture advection ahead of the MJO convection center. This advection is tightly associated with the background distribution of low-level moisture. Drier biases in background low-level moisture over the entire tropical regions account for underestimated MJO occurrence frequency in the bottom-tier simulations. This study highlights the importance of reproducing the year-to-year background states for the simulations of MJO propagation in the models by further decomposing the background states into the climatology and anomaly components. The background meridional moisture gradient accounting for the IO-MJO occurrence frequency is closely related to its climatology component; however, the anomaly component regulated by El Niño–Southern Oscillation (ENSO) is also important for the WP-MJO occurrence frequency. The year-to-year variations of background zonal and meridional gradients associated with ENSO account for the IO-MJO occurrence frequency tend to be offset from each other. As a result, ENSO shows no significant impact on the IO-MJO occurrence frequency. However, the MJO events are more likely to propagate across the western Pacific during El Niño years.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Ling, lingjian@lasg.iap.ac.cn

Abstract

This study explores the impacts of background states on the propagation of the Madden–Julian oscillation (MJO) in 24 CMIP5 models using a precipitation-based MJO tracking method. The ability of the model to reproduce the MJO propagation is reflected in the occurrence frequency of individual MJO events. Moisture budget analysis suggests that the occurrence frequencies of MJO events that propagate across the Indian Ocean (IO-MJO) and western Pacific (WP-MJO) in the models are mainly related to the low-level meridional moisture advection ahead of the MJO convection center. This advection is tightly associated with the background distribution of low-level moisture. Drier biases in background low-level moisture over the entire tropical regions account for underestimated MJO occurrence frequency in the bottom-tier simulations. This study highlights the importance of reproducing the year-to-year background states for the simulations of MJO propagation in the models by further decomposing the background states into the climatology and anomaly components. The background meridional moisture gradient accounting for the IO-MJO occurrence frequency is closely related to its climatology component; however, the anomaly component regulated by El Niño–Southern Oscillation (ENSO) is also important for the WP-MJO occurrence frequency. The year-to-year variations of background zonal and meridional gradients associated with ENSO account for the IO-MJO occurrence frequency tend to be offset from each other. As a result, ENSO shows no significant impact on the IO-MJO occurrence frequency. However, the MJO events are more likely to propagate across the western Pacific during El Niño years.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Ling, lingjian@lasg.iap.ac.cn
Save
  • Adames, Á. F., and J. M. Wallace, 2015: Three-dimensional structure and evolution of the moisture field in the MJO. J. Atmos. Sci., 72, 37333754, https://doi.org/10.1175/JAS-D-15-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahn, M.-S., and Coauthors, 2020: MJO propagation across the Maritime Continent: Are CMIP6 models better than CMIP5 models? Geophys. Res. Lett., 47, e2020GL087250, https://doi.org/10.1029/2020GL087250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashouri, H., K.-L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, https://doi.org/10.1175/BAMS-D-13-00068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Chen, G. S., and B. Wang, 2020: Circulation factors determining the propagation speed of the Madden–Julian oscillation. J. Climate, 33, 33673380, https://doi.org/10.1175/JCLI-D-19-0661.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G. W., J. Ling, C. Li, Y. Zhang, and C. Zhang, 2020: Barrier effect of the Indo-Pacific Maritime Continent on MJO propagation in observations and CMIP5 models. J. Climate, 33, 51735193, https://doi.org/10.1175/JCLI-D-19-0771.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, A. O., and X. Jiang, 2017: Winter mean lower tropospheric moisture over the Maritime Continent as a climate model diagnostic metric for the propagation of the Madden–Julian oscillation. Geophys. Res. Lett., 44, 25882596, https://doi.org/10.1002/2016GL072430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., P. E. Roundy, C. J. Schreck, A. Vintzileos, and C. D. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, https://doi.org/10.1175/MWR-D-13-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, https://doi.org/10.1175/JCLI-D-11-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, and H. Murakami, 2014: Moisture asymmetry and MJO eastward propagation in an aquaplanet general circulation model. J. Climate, 27, 87478760, https://doi.org/10.1175/JCLI-D-14-00148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, M., J. Lin, W. Wang, D. Kim, T. Shinoda, and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214, https://doi.org/10.1175/JCLI-D-12-00541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inness, P. M., and J. M. Slingo, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part I: Comparisons with observations and an atmosphere-only GCM. J. Climate, 16, 345364, https://doi.org/10.1175/1520-0442(2003)016<0345:SOTMJO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inness, P. M., J. M. Slingo, E. Guilyardi, and J. Cole, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16, 365382, https://doi.org/10.1175/1520-0442(2003)016<0365:SOTMJO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X., C. Li, J. Ling, and C. Zhang, 2008: Impacts of a GCM’s resolution on MJO simulation. Adv. Atmos. Sci., 25, 139156, https://doi.org/10.1007/s00376-008-0139-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, W., P. Huang, G. Huang, and J. Ying, 2021: Origins of the excessive westward extension of ENSO SST simulated in CMIP5 and CMIP6 models. J. Climate, 34, 28392851, https://doi.org/10.1175/JCLI-D-20-0551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 47184748, https://doi.org/10.1002/2014JD022375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., D. Kim, M.-S. Ahn, R. Neale, J. Lee, and P. J. Gleckler, 2020: The role of the mean state on MJO simulation in CESM2 ensemble simulation. Geophys. Res. Lett., 47, e2020GL089824, https://doi.org/10.1029/2020GL089824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436, https://doi.org/10.1175/2009JCLI3063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., J. S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, https://doi.org/10.1175/JCLI-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., F. Vitart, and D. E. Waliser, 2018: Prediction of the Madden–Julian oscillation: A review. J. Climate, 31, 94259443, https://doi.org/10.1175/JCLI-D-18-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., J. M. Caron, J. H. Richter, and I. R. Simpson, 2020: The lack of QBO‐MJO connection in CMIP6 models. Geophys. Res. Lett., 47, e2020GL087295, https://doi.org/10.1029/2020GL087295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., 2017: The impact of the mean moisture bias on the key physics of MJO propagation in the ECMWF reforecast. J. Geophys. Res. Atmos., 122, 77727784, https://doi.org/10.1002/2017JD027005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. D. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, https://doi.org/10.1029/2011JD016031.

    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., and C. A. Demott, 2020: Mean state biases and interannual variability affect perceived sensitivities of the Madden–Julian oscillation to air–sea coupling. J. Adv. Model. Earth Syst., 12, e2019MS001799, https://doi.org/10.1029/2019MS001799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., Y.-G. Ham, J.-Y. Lee, and F.-F. Jin, 2012: Improved simulation of two types of El Niño in CMIP5 models. Environ. Res. Lett., 7, 034002, https://doi.org/10.1088/1748-9326/7/3/034002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and I. Smith, 1995: Numerical simulation of the tropical intraseasonal oscillation and the effect of warm SST. J. Meteor. Res., 9, 112, http://jmr.cmsjournal.net/en/article/id/533?articleType=archive_en.

    • Search Google Scholar
    • Export Citation
  • Li, G., and S. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, https://doi.org/10.1175/JCLI-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., J. Ling, and P.-C. Hsu, 2020: Madden–Julian Oscillation: Its discovery, dynamics, and impact on East Asia. J. Meteor. Res., 34, 2042, https://doi.org/10.1007/s13351-020-9153-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, Y., S.-W. Son, A. G. Marshall, H. H. Hendon, and K.-H. Seo, 2019: Influence of the QBO on MJO prediction skill in the subseasonal-to-seasonal prediction models. Climate Dyn., 53, 16811695, https://doi.org/10.1007/s00382-019-04719-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., C. Li, and X. Jia, 2009: Impacts of cumulus momentum transport on MJO simulation. Adv. Atmos. Sci., 26, 864876, https://doi.org/10.1007/s00376-009-8016-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., P. Bauer, P. Bechtold, A. Beljaars, R. Forbes, F. Vitart, M. Ulate, and C. Zhang, 2014: Global versus local MJO forecast skill of the ECMWF model during DYNAMO. Mon. Wea. Rev., 142, 22282247, https://doi.org/10.1175/MWR-D-13-00292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., C. Zhang, S. Wang, and C. Li, 2017: A new interpretation of the ability of global models to simulate the MJO. Geophys. Res. Lett., 44, 57985806, https://doi.org/10.1002/2017GL073891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., Y. Zhao, and G. Chen, 2019: Barrier effect on MJO propagation by the Maritime Continent in the MJO Task Force/GEWEX atmospheric system study models. J. Climate, 32, 55295547, https://doi.org/10.1175/JCLI-D-18-0870.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., L. Zhou, J. Ling, X. Fu, and G. Huang, 2016: Relationship between SST anomalies and the intensity of intraseasonal variability. Theor. Appl. Climatol., 124, 847854, https://doi.org/10.1007/s00704-015-1458-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., Y. Da, T. Li, and F. Hu, 2020: Impact of ENSO on MJO pattern evolution over the Maritime Continent. J. Meteor. Res., 34, 11511166, https://doi.org/10.1007/s13351-020-0046-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., Q. Zhang, C. Zhang, Y. Zhu, M. Khairoutdinov, H. M. Kim, C. Schumacher, and M. Zhang, 2016: A revised real-time multivariate MJO index. Mon. Wea. Rev., 144, 627642, https://doi.org/10.1175/MWR-D-15-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50-day oscillation in zonal wind in tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, https://doi.org/10.1175/2008JCLI2542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pang, B., R. Lu, and J. Ling, 2018: Impact of cold surges on the Madden–Julian Oscillation propagation over the Maritime Continent. Atmos. Sci. Lett., 19, e854, https://doi.org/10.1002/asl.854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, P., D. Kim, M. Ahn, D. Kang, and H. Ren, 2021: Intercomparison of MJO column moist static energy and water vapor budget among six modern reanalysis products. J. Climate, 34, 29773001, https://doi.org/10.1175/JCLI-D-20-0653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K., J. E. Schemm, W. Wang, and A. Kumar, 2007: The boreal summer intraseasonal oscillation simulated in the NCEP Climate Forecast System: The effect of sea surface temperature. Mon. Wea. Rev., 135, 18071827, https://doi.org/10.1175/MWR3369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., Y. Lim, C. Yoo, H. H. Hendon, and J. Kim, 2017: Stratospheric control of the Madden–Julian oscillation. J. Climate, 30, 19091922, https://doi.org/10.1175/JCLI-D-16-0620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., 2004: Madden–Julian variability in NCAR CAM2.0 and CCSM2.0. Climate Dyn., 23, 259278, https://doi.org/10.1007/s00382-004-0447-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Atmos. Sci., 26, 11301151, https://doi.org/10.1175/JCLI-D-12-00074.1.

    • Search Google Scholar
    • Export Citation
  • Sun, L., H. Wang, and F. Liu, 2019: Combined effect of the QBO and ENSO on the MJO. Atmos. Oceanic Sci. Lett., 12, 170176, https://doi.org/10.1080/16742834.2019.1588064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tam, C. Y., and N. C. Lau, 2005: Modulation of the Madden–Julian Oscillation by ENSO: Inferences from observations and GCM simulations. J. Meteor. Soc. Japan, 83, 727743, https://doi.org/10.2151/jmsj.83.727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2018: Dynamics-oriented diagnostics for the Madden–Julian oscillation. J. Climate, 31, 31173135, https://doi.org/10.1175/JCLI-D-17-0332.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., G. Chen, and F. Liu, 2019: Diversity of the Madden–Julian Oscillation. Sci. Adv., 5, eaax0220, https://doi.org/10.1126/sciadv.aax0220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., M. K. Tippett, A. H. Sobel, Z. Martin, and F. Vitart, 2019: Impact of the QBO on prediction and predictability of the MJO convection. J. Geophys. Res. Atmos., 124, 11 76611 782, https://doi.org/10.1029/2019JD030575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Y. T., and H. L. Ren, 2019: Modulation of ENSO on fast and slow MJO modes during boreal winter. J. Climate, 32, 74837506, https://doi.org/10.1175/JCLI-D-19-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and L. Song, 2018: Spatiotemporal change of intraseasonal oscillation intensity over the tropical Indo-Pacific Ocean associated with El Niño and La Niña events. Climate Dyn., 50, 12211242, https://doi.org/10.1007/s00382-017-3675-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and H. H. Hendon, 1997: Propagating and stationary components of the intraseasonal oscillation in tropical convection. J. Atmos. Sci., 54, 741767, https://doi.org/10.1175/1520-0469(1997)054<0741:PASCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Ling, 2017: Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Climate, 30, 34393459, https://doi.org/10.1175/JCLI-D-16-0614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and Coauthors, 2006: Simulations of the Madden–Julian Oscillation by four pairs of coupled and uncoupled global models. Climate Dyn., 27, 573592, https://doi.org/10.1007/s00382-006-0148-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C. B., T. Li, and T. J. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291307, https://doi.org/10.1175/JCLI-D-12-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 468 65 0
Full Text Views 434 264 41
PDF Downloads 464 278 49