Observations and Simulated Mechanisms of Elevation-Dependent Warming over the Tropical Andes

Oscar Chimborazo aDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
bDirección de Investigación y Desarrollo, Facultad de Ingeniería Civil y Mecánica, Universidad Técnica de Ambato, Ambato, Ecuador
cYachay Tech University, School of Physical Sciences and Nanotechnology, Urcuquí, Ecuador

Search for other papers by Oscar Chimborazo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9736-4518
,
Justin R. Minder aDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Justin R. Minder in
Current site
Google Scholar
PubMed
Close
, and
Mathias Vuille aDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Mathias Vuille in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Many mountain regions around the world are exposed to enhanced warming when compared to their surroundings, threatening key environmental services provided by mountains. Here we investigate this effect, known as elevation-dependent warming (EDW), in the Andes of Ecuador, using observations and simulations with the Weather Research and Forecasting (WRF) Model. EDW is discernible in observations of mean and maximum temperature in the Andes of Ecuador, but large uncertainties remain due to considerable data gaps in both space and time. WRF simulations of present-day (1986–2005) and future climate (RCP4.5 and RCP8.5 for 2041–60) reveal a very distinct EDW signal, with different rates of warming on the eastern and western slopes. This EDW effect is the combined result of multiple feedback mechanisms that operate on different spatial scales. Enhanced upper-tropospheric warming projects onto surface temperature on both sides of the Andes. In addition, changes in the zonal mean midtropospheric circulation lead to enhanced subsidence and warming over the western slopes at high elevation. The increased subsidence also induces drying, reduces cloudiness, and results in enhanced net surface radiation receipts, further contributing to stronger warming. Finally, the highest elevations are also affected by the snow-albedo feedback, due to significant reductions in snow cover by the middle of the twenty-first century. While these feedbacks are more pronounced in the high-emission scenario RCP8.5, our results indicate that high elevations in Ecuador will continue to warm at enhanced rates in the twenty-first century, regardless of emission scenario.

Significance Statement

Mountains are often projected to experience stronger warming than their surrounding lowlands going forward, a phenomenon known as elevation-dependent warming (EDW), which can threaten high-altitude ecosystems and lead to accelerated glacier retreat. We investigate the mechanisms associated with EDW in the Andes of Ecuador using both observations and model simulations for the present and the future. A combination of factors amplify warming at mountain tops, including a stronger warming high in the atmosphere, reduced cloudiness, and a reduction of snow and ice at high elevations. The latter two factors also favor enhanced absorption of sunlight, which promotes warming. The degree to which this warming is enhanced at high elevations in the future depends on the greenhouse gas emission pathway.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mathias Vuille, mvuille@albany.edu

Abstract

Many mountain regions around the world are exposed to enhanced warming when compared to their surroundings, threatening key environmental services provided by mountains. Here we investigate this effect, known as elevation-dependent warming (EDW), in the Andes of Ecuador, using observations and simulations with the Weather Research and Forecasting (WRF) Model. EDW is discernible in observations of mean and maximum temperature in the Andes of Ecuador, but large uncertainties remain due to considerable data gaps in both space and time. WRF simulations of present-day (1986–2005) and future climate (RCP4.5 and RCP8.5 for 2041–60) reveal a very distinct EDW signal, with different rates of warming on the eastern and western slopes. This EDW effect is the combined result of multiple feedback mechanisms that operate on different spatial scales. Enhanced upper-tropospheric warming projects onto surface temperature on both sides of the Andes. In addition, changes in the zonal mean midtropospheric circulation lead to enhanced subsidence and warming over the western slopes at high elevation. The increased subsidence also induces drying, reduces cloudiness, and results in enhanced net surface radiation receipts, further contributing to stronger warming. Finally, the highest elevations are also affected by the snow-albedo feedback, due to significant reductions in snow cover by the middle of the twenty-first century. While these feedbacks are more pronounced in the high-emission scenario RCP8.5, our results indicate that high elevations in Ecuador will continue to warm at enhanced rates in the twenty-first century, regardless of emission scenario.

Significance Statement

Mountains are often projected to experience stronger warming than their surrounding lowlands going forward, a phenomenon known as elevation-dependent warming (EDW), which can threaten high-altitude ecosystems and lead to accelerated glacier retreat. We investigate the mechanisms associated with EDW in the Andes of Ecuador using both observations and model simulations for the present and the future. A combination of factors amplify warming at mountain tops, including a stronger warming high in the atmosphere, reduced cloudiness, and a reduction of snow and ice at high elevations. The latter two factors also favor enhanced absorption of sunlight, which promotes warming. The degree to which this warming is enhanced at high elevations in the future depends on the greenhouse gas emission pathway.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mathias Vuille, mvuille@albany.edu
Save
  • Beniston, M., H. F. Diaz, and R. S. Bradley, 1997: Climatic change at high elevation sites: An overview. Climatic Change, 36, 233251, https://doi.org/10.1023/A:1005380714349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S. R., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, https://doi.org/10.1175/JCLI3819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571657.

    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., M. Vuille, H. F. Diaz, and W. Vergara, 2006: Threats to water supplies in the tropical Andes. Science, 312, 17551756, https://doi.org/10.1126/science.1128087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., F. T. Keimig, H. F. Diaz, and D. R. Hardy, 2009: Recent changes in freezing level heights in the tropics with implications for the deglacierization of high mountain regions. Geophys. Res. Lett., 36, L17701, https://doi.org/10.1029/2009GL037712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruyère, C. L., A. J. Monaghan, D. F. Steinhoff, and D. Yates, 2015: Bias-corrected CMIP5 CESM data in WRF/MPAS intermediate file format. NCAR Tech. Note NCAR/TN-515+STR, 60 pp, https://doi.org/10.5065/D6445JJ7.

    • Search Google Scholar
    • Export Citation
  • Buytaert, W., M. Vuille, A. Dewulf, R. Urrutia, A. Karmalkar, and R. Célleri, 2010: Uncertainties in climate change projections and regional downscaling in the tropical Andes: Implications for water resources management. Hydrol. Earth Syst. Sci., 14, 12471258, https://doi.org/10.5194/hess-14-1247-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campozano, L., D. Ballari, M. Montenegro, and A. Aviles, 2020: Future meteorological droughts in Ecuador: Decreasing trends and associated spatio-temporal features derived from CMIP5 models. Front. Earth Sci., 8, 17, https://doi.org/10.3389/feart.2020.00017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, M., C. Huggel, J. Bury, C. Portocarrero, and W. Haeberli, 2012: An integrated socio-environmental framework for glacier hazard management and climate change adaptation: Lessons from Lake 513, Cordillera Blanca, Peru. Climatic Change, 112, 733767, https://doi.org/10.1007/s10584-011-0249-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cauvy-Fraunié, S., R. Espinosa, P. Andino, D. Jacobsen, and O. Dangles, 2015: Invertebrate metacommunity structure and dynamics in an Andean glacial stream network facing climate change. PLOS ONE, 10, e0136793, https://doi.org/10.1371/journal.pone.0136793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., C. M. Naud, I. Rangwala, C. C. Landry, and J. R. Miller, 2014: Comparison of the sensitivity of surface downward longwave radiation to changes in water vapor at two high elevation sites. Environ. Res. Lett., 9, 114015, https://doi.org/10.1088/1748-9326/9/11/114015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chimborazo, O., 2018: Projected changes in climate, elevation-dependent warming, and extreme events over continental Ecuador for the period 2041–2070. Ph.D. thesis, State University of New York at Albany, 227 pp., https://www.proquest.com/openview/4819b79e8b1f773235fef231dec73b8a/1?pq-origsite=gscholar&cbl=18750&diss=y.

    • Search Google Scholar
    • Export Citation
  • Chimborazo, O., and M. Vuille, 2021: Present-day climate and projected future temperature and precipitation changes in Ecuador. Theor. Appl. Climatol., 143, 15811597, https://doi.org/10.1007/s00704-020-03483-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 10291136.

    • Search Google Scholar
    • Export Citation
  • Cook, S. J., I. Kougkoulos, L. A. Edwards, J. Dortch, and D. Hoffmann, 2016: Glacier change and glacial lake outburst flood risk in the Bolivian Andes. Cryosphere, 10, 23992413, https://doi.org/10.5194/tc-10-2399-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dangles, O., A. Rabatel, M. Kraemer, G. Zeballos, A. Soruco, D. Jacobsen, and F. Anthelme, 2017: Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes. PLOS ONE, 12, e0175814, https://doi.org/10.1371/journal.pone.0175814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drenkhan, F., C. Huggel, L. Guardamino, and W. Haeberli, 2019: Managing risks and future options from new lakes in the deglaciating Andes of Peru: The example of the Vilcabamba-Urubamba basin. Sci. Total Environ., 665, 465483, https://doi.org/10.1016/j.scitotenv.2019.02.070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eaton, B., 2011: User’s guide to the Community Atmosphere Model CAM-5.1. NCAR, http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/ug5_1/ug.html.

    • Search Google Scholar
    • Export Citation
  • Feeley, K. J., and Coauthors, 2011: Upslope migration of Andean trees. J. Biogeogr., 38, 783791, https://doi.org/10.1111/j.1365-2699.2010.02444.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741866.

    • Search Google Scholar
    • Export Citation
  • Francou, B., M. Vuille, P. Wagnon, J. Mendoza, and J. E. Sicart, 2003: Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16°S. J. Geophys. Res., 108, 4154, https://doi.org/10.1029/2002JD002959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., F. Chen, D. P. Lettenmaier, J. Xu, L. Xiao, and X. Li, 2018: Does elevation-dependent warming hold true above 5000 m elevation? Lessons from the Tibetan Plateau. npj Climate Atmos. Sci., 1, 19, https://doi.org/10.1038/s41612-018-0030-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., J. W. Hurrell, M. R. Marinucci, and M. Beniston, 1997: Elevation dependency of the surface climate change signal: A model study. J. Climate, 10, 288296, https://doi.org/10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosse, H., 2015: Climate System Dynamics and Modelling. Cambridge University Press, 358 pp.

  • Harris, I., T. J. Osborn, P. D. Jones, and D. H. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2016: Global Physical Climatology. 2nd ed. Elsevier, 498 pp.

  • Heredia, M. B., C. Junquas, C. Prieur, and T. Condom, 2018: New statistical methods for precipitation bias correction applied to WRF model simulations in the Antisana region, Ecuador. J. Hydrometeor., 19, 20212040, https://doi.org/10.1175/JHM-D-18-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyer, S., and J. Hamman, 2017: xarray: N-D labeled arrays and datasets in Python. J. Open Res. Software, 5, 10, https://doi.org/10.5334/jors.148.

  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 18311844, https://doi.org/10.1175/2010JAMC2432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, J. D., 2007: Matplotlib: A 2D graphics environment. Comput. Sci. Eng., 9, 9095, https://doi.org/10.1109/MCSE.2007.55.

  • Huss, M., and Coauthors, 2017: Towards mountains without permanent snow and ice. Earth’s Future, 5, 418435, https://doi.org/10.1002/2016EF000514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hussain, M. M., and I. Mahmud, 2019: pyMannKendall: A Python package for non parametric Mann Kendall family of trend tests. J. Open Source Software, 4, 1556, https://doi.org/10.21105/joss.01556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Search Google Scholar
    • Export Citation
  • Jacobsen, D., A. M. Milner, L. E. Brown, and O. Dangles, 2012: Biodiversity under threat in glacier-fed river systems. Nat. Climate Change, 2, 361364, https://doi.org/10.1038/nclimate1435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junquas, C., K. Takahashi, T. Condom, J. C. Espinoza, S. Chavez, J. E. Sicart, and T. Lebel, 2018: Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes. Climate Dyn., 50, 39954017, https://doi.org/10.1007/s00382-017-3858-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaser, G., M. Grosshauser, and B. Marzeion, 2010: Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci. USA, 107, 20 22320 227, https://doi.org/10.1073/pnas.1008162107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotlarski, S., D. Lüthi, and C. Schär, 2015: The elevation dependency of 21st century European climate change: An RCM ensemble perspective. Int. J. Climatol., 35, 39023920, https://doi.org/10.1002/joc.4254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladwig, W., 2017: wrf-python (version 1.2.0). UCAR/NCAR, https://doi.org/10.5065/D6W094P1.

  • Letcher, T. W., and J. R. Minder, 2015: Characterization of the simulated regional snow albedo feedback using a regional climate model over complex terrain. J. Climate, 28, 75767595, https://doi.org/10.1175/JCLI-D-15-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letcher, T. W., and J. R. Minder, 2017: The simulated response of diurnal mountain winds to regionally enhanced warming caused by the snow albedo feedback. J. Atmos. Sci., 74, 4967, https://doi.org/10.1175/JAS-D-16-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutz, D. A., R. L. Powell, and M. R. Silman, 2013: Four decades of Andean timberline migration and implications for biodiversity loss with climate change. PLOS ONE, 8, e74496, https://doi.org/10.1371/journal.pone.0074496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magalhães, N. D., H. Evangelista, T. Condom, A. Rabatel, and P. Ginot, 2019: Amazonian biomass burning enhances tropical Andean glaciers melting. Sci. Rep., 9, 16914, https://doi.org/10.1038/s41598-019-53284-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Castro, D., S. Kumar, J. L. Flores Rojas, A. Moya-Álvarez, J. M. Valdivia Prado, E. Villalobos-Puma, C. Del Castillo-Velarde, and Y. Silva-Vidal, 2019: The impact of microphysics parameterization in the simulation of two convective rainfall events over the central Andes of Peru using WRF-ARW. Atmosphere, 10, 442, https://doi.org/10.3390/atmos10080442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Max Planck Institute for Meteorology, 2018: Climate Data Operators (version 1.9.3). MPI, http://www.mpimet.mpg.de/cdo.

  • McGlone, D., and M. Vuille, 2012: The associations between El Niño–Southern Oscillation and tropical South American climate in a regional climate model. J. Geophys. Res., 117, D06105, https://doi.org/10.1029/2011JD017066.

    • Search Google Scholar
    • Export Citation
  • Met Office, 2018: Cartopy: A cartographic Python library with a Matplotlib interface version 0.16.0. Met Office, http://scitools.org.uk/cartopy.

    • Search Google Scholar
    • Export Citation
  • Michelutti, N., A. P. Wolfe, C. C. Cooke, W. O. Hobbs, M. Vuille, and J. P. Smol, 2015: Climate change forces new ecological states in tropical Andean lakes. PLOS ONE, 10, e0115338, https://doi.org/10.1371/journal.pone.0115338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., T. W. Letcher, and S. M. Skiles, 2016: An evaluation of high‐resolution regional climate model simulations of snow cover and albedo over the Rocky Mountains, with implications for the simulated snow‐albedo feedback. J. Geophys. Res. Atmos., 121, 90699088, https://doi.org/10.1002/2016JD024995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minder, J. R., T. W. Letcher, and C. Liu, 2018: The character and causes of elevation-dependent warming in high-resolution simulations of Rocky Mountain climate change. J. Climate, 31, 20932113, https://doi.org/10.1175/JCLI-D-17-0321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, L. T., and Coauthors, 2015: Pollution and its impacts on the South American cryosphere. Earth’s Future, 3, 345369, https://doi.org/10.1002/2015EF000311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., D. F. Steinhoff, C. L. Bruyère, and D. Yates, 2014: NCAR CESM global bias-corrected CMIP5 output to support WRF/MPAS research. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 22 November 2016, https://doi.org/10.5065/D6DJ5CN4.

    • Search Google Scholar
    • Export Citation
  • Morán-Tejeda, E., and Coauthors, 2016: Climate trends and variability in Ecuador (1966–2011). Int. J. Climatol., 36, 38393855, https://doi.org/10.1002/joc.4597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moret, P., P. Muriel, R. Jaramillo, and O. Dangles, 2019: Humboldt’s Tableau Physique revisited. Proc. Natl. Acad. Sci. USA, 116, 12 88912 894, https://doi.org/10.1073/pnas.1904585116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morueta-Holme, N., K. Engemann, P. Sandoval-Acuna, J. D. Jonas, R. M. Segnitz, and J. C. Svenning, 2015: Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl. Acad. Sci. USA, 112, 12 74112 745, https://doi.org/10.1073/pnas.1509938112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mourre, L., T. Condom, C. Junquas, T. Lebel, J. E. Sicart, R. Figueroa, and A. Cochachin, 2016: Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in a tropical mountain environment (Cordillera Blanca, Peru). Hydrol. Earth Syst. Sci., 20, 125141, https://doi.org/10.5194/hess-20-125-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moya-Álvarez, A. S., D. Martinez-Castro, J. L. Flores, and Y. Silva, 2018: Sensitivity study on the influence of parameterization schemes in WRF_ARW model on short- and medium-range precipitation forecasts in the Central Andes of Peru. Adv. Meteor., 2018: 1381092, https://doi.org/10.1155/2018/1381092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Center for Atmospheric Research, 2017: The NCAR Command Language (version 6.4.0). UCAR/NCAR/CISL/TDD, https://doi.org/10.5065/D6WD3XH5.

    • Search Google Scholar
    • Export Citation
  • Navarro-Serrano, F., J. I. López-Moreno, F. Domínguez-Castro, E. Alonso-González, C. Azorin-Molina, A. El-Kenawy, and S. M. Vicente-Serrano, 2020: Maximum and minimum air temperature lapse rates in the Andean region of Ecuador and Peru. Int. J. Climatol., 40, 61506168, https://doi.org/10.1002/joc.6574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 289 pp., http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

    • Search Google Scholar
    • Export Citation
  • Ochoa, A., L. Pineda, P. Crespo, and P. Willems, 2014: Evaluation of TRMM 3B42 precipitation estimates and WRF retrospective precipitation simulation over the Pacific–Andean region of Ecuador and Peru. Hydrol. Earth Syst. Sci., 18, 31793193, https://doi.org/10.5194/hess-18-3179-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochoa, A., L. Campozano, E. Sánchez, R. Gualán, and E. Samaniego, 2016: Evaluation of downscaled estimates of monthly temperature and precipitation for a southern Ecuador case study. Int. J. Climatol., 36, 12441255, https://doi.org/10.1002/joc.4418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohmura, A., 2012: Enhanced temperature variability in high-altitude climate change. Theor. Appl. Climatol., 110, 499508, https://doi.org/10.1007/s00704-012-0687-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepin, N., and D. J. Seidel, 2005: A global comparison of surface and free-air temperatures at high elevations. J. Geophys. Res., 110, D03104, https://doi.org/10.1029/2004JD005047.

    • Search Google Scholar
    • Export Citation
  • Pepin, N., and J. D. Lundquist, 2008: Temperature trends at high elevations: Patterns across the globe. Geophys. Res. Lett., 35, L14701, https://doi.org/10.1029/2008GL034026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pepin, N., and Coauthors, 2015: Elevation-dependent warming in mountain regions of the world. Nat. Climate Change, 5, 424430, https://doi.org/10.1038/nclimate2563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posada-Marín, J. A., A. M. Rendón, J. F. Salazar, J. F. Mejía, and J. C. Villegas, 2019: WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: Implications for GCM-scale simulation of precipitation over complex terrain. Climate Dyn., 52, 36093629, https://doi.org/10.1007/s00382-018-4403-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection‐permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., S. J. Ghan, and L. R. Leung, 2010: Downscaling hydroclimatic changes over the Western US based on CAM subgrid scheme and WRF regional climate simulations. Int. J. Climatol., 30, 675693, https://doi.org/10.1002/joc.1928.

    • Search Google Scholar
    • Export Citation
  • Quenta, E., J. Molina-Rodriguez, K. Gonzales, F. Rebaudo, J. Casas, D. Jacobsen, and O. Dangles, 2016: Direct and indirect effects of glaciers on aquatic biodiversity in high Andean peatlands. Global Change Biol., 22, 31963205, https://doi.org/10.1111/gcb.13310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabatel, A., and Coauthors, 2013: Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. Cryosphere, 7, 81102, https://doi.org/10.5194/tc-7-81-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., and J. R. Miller, 2012: Climate change in mountains: A review of elevation-dependent warming and its possible causes. Climatic Change, 114, 527547, https://doi.org/10.1007/s10584-012-0419-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., J. R. Miller, G. L. Russell, and M. Xu, 2010: Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century. Climate Dyn., 34, 859872, https://doi.org/10.1007/s00382-009-0564-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., J. Barsugli, K. Cozzetto, J. Neff, and J. Praire, 2012: Mid-21st century projections in temperature extremes in the southern Colorado Rocky Mountains from regional climate models. Climate Dyn., 39, 18231840, https://doi.org/10.1007/s00382-011-1282-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangwala, I., E. Sinsky, and J. R. Miller, 2013: Amplified warming projections for high altitude regions of the Northern Hemisphere mid-latitudes from CMIP5 models. Environ. Res. Lett., 8, 024040, https://doi.org/10.1088/1748-9326/8/2/024040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, https://doi.org/10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2014: Climate change impacts on the water balance of the Colorado Headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, https://doi.org/10.1175/JHM-D-13-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, A. M., A. Gnanadesikan, and B. Zaitchik, 2017: Are the central Andes mountains a warming hot spot? J. Climate, 30, 35893608, https://doi.org/10.1175/JCLI-D-16-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saavedra, M., C. Junquas, J. C. Espinoza, and Y. Silva, 2020: Impacts of topography and land use changes on the air surface temperature and precipitation over the central Peruvian Andes. Atmos. Res., 234, 104711, https://doi.org/10.1016/j.atmosres.2019.104711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010a: NCEP Climate Forecast System Reanalysis (CFSR) 6-hourly products, January 1979 to December 2010. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 1 May 2014, https://doi.org/10.5065/D69K487J.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010b: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., L. R. Leung, Y. Qian, and Y. Zhang, 2010: Regional climate model projections for the state of Washington. Climatic Change, 102, 5175, https://doi.org/10.1007/s10584-010-9849-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schauwecker, S., and Coauthors, 2014: Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited. Global Planet. Change, 119, 8597, https://doi.org/10.1016/j.gloplacha.2014.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schauwecker, S., and Coauthors, 2017: The freezing level in the tropical Andes, Peru: An indicator for present and future glacier extents. J. Geophys. Res. Atmos., 122, 51725189, https://doi.org/10.1002/2016JD025943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seabold, S., and J. Perktold, 2010: Statsmodels: Econometric and statistical modeling with python. Proc. Ninth Python Sci. Conf., Austin, TX, SciPy, 92–96, https://www.semanticscholar.org/paper/Statsmodels%3A-Econometric-and-Statistical-Modeling-Seabold-Perktold/b78911013185d891f9dedec1a1708ea4eef97a62.

    • Search Google Scholar
    • Export Citation
  • Seimon, T. A., and Coauthors, 2007: Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Global Change Biol., 13, 288299, https://doi.org/10.1111/j.1365-2486.2006.01278.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sicart, J. E., J. C. Espinoza, L. Queno, and M. Medina, 2016: Radiative properties of clouds over a tropical Bolivian glacier: Seasonal variations and relationships with regional atmospheric circulation. Int. J. Climatol., 36, 31163128, https://doi.org/10.1002/joc.4540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Search Google Scholar
    • Export Citation
  • Snedecor, G. W., and W. G. Cochran, 1989: Statistical Methods. 8th ed. Iowa State University Press, 523 pp.

    • Search Google Scholar