Interdecadal Changes in the Relationship between Wintertime Surface Air Temperature over the Indo-China Peninsula and ENSO

Juncong Li aDepartment of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, China
bInstitute of Atmospheric Sciences, Fudan University, Shanghai, China

Search for other papers by Juncong Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0494-9526
,
Zhiping Wen aDepartment of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, China
bInstitute of Atmospheric Sciences, Fudan University, Shanghai, China
cInnovation Center of Ocean and Atmosphere System, Zhuhai, China
dJiangsu Collaborative Innovation Center for Climate Change, Nanjing, China

Search for other papers by Zhiping Wen in
Current site
Google Scholar
PubMed
Close
,
Xiuzhen Li eSchool of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
fGuangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Zhuhai, China

Search for other papers by Xiuzhen Li in
Current site
Google Scholar
PubMed
Close
, and
Yuanyuan Guo aDepartment of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, China
bInstitute of Atmospheric Sciences, Fudan University, Shanghai, China

Search for other papers by Yuanyuan Guo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Interdecadal variations of the relationship between El Niño–Southern Oscillation (ENSO) and the Indo-China Peninsula (ICP) surface air temperature (SAT) in winter are investigated in the study. Generally, there exists a positive correlation between them during 1958–2015 because the ENSO-induced anomalous western North Pacific anticyclone (WNPAC) is conducive to pronounced temperature advection anomalies over the ICP. However, such correlation is unstable in time, having experienced a high-to-low transition around the mid-1970s and a recovery since the early 1990s. This oscillating relationship is owing to the anomalous WNPAC intensity in different decades. During the epoch of high correlation, the anomalous WNPAC and associated southwesterly winds over the ICP are stronger, which brings amounts of warm temperature advection and markedly heats the ICP. In contrast, a weaker WNPAC anomaly and insignificant ICP SAT anomalies are the circumstances for the epoch of low correlation. It is also found that substantial southwesterly wind anomalies over the ICP related to the anomalous WNPAC occur only when large sea surface temperature (SST) anomalies over the northwest Indian Ocean (NWIO) coincide with ENSO (viz., when the ENSO–NWIO SST connection is strong). The NWIO SST anomalies are capable of driving favorable atmospheric circulation that effectively alters ICP SAT and efficiently modulates the ENSO–ICP SAT correlation, which is further supported by numerical simulations utilizing the Community Atmospheric Model, version 4 (CAM4). This paper emphasizes the non-stationarity of the ENSO–ICP SAT relationship and also uncovers the underlying modulation factors, which has important implications for the seasonal prediction of the ICP temperature.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanyuan Guo, guoyyuan@fudan.edu.cn

Abstract

Interdecadal variations of the relationship between El Niño–Southern Oscillation (ENSO) and the Indo-China Peninsula (ICP) surface air temperature (SAT) in winter are investigated in the study. Generally, there exists a positive correlation between them during 1958–2015 because the ENSO-induced anomalous western North Pacific anticyclone (WNPAC) is conducive to pronounced temperature advection anomalies over the ICP. However, such correlation is unstable in time, having experienced a high-to-low transition around the mid-1970s and a recovery since the early 1990s. This oscillating relationship is owing to the anomalous WNPAC intensity in different decades. During the epoch of high correlation, the anomalous WNPAC and associated southwesterly winds over the ICP are stronger, which brings amounts of warm temperature advection and markedly heats the ICP. In contrast, a weaker WNPAC anomaly and insignificant ICP SAT anomalies are the circumstances for the epoch of low correlation. It is also found that substantial southwesterly wind anomalies over the ICP related to the anomalous WNPAC occur only when large sea surface temperature (SST) anomalies over the northwest Indian Ocean (NWIO) coincide with ENSO (viz., when the ENSO–NWIO SST connection is strong). The NWIO SST anomalies are capable of driving favorable atmospheric circulation that effectively alters ICP SAT and efficiently modulates the ENSO–ICP SAT correlation, which is further supported by numerical simulations utilizing the Community Atmospheric Model, version 4 (CAM4). This paper emphasizes the non-stationarity of the ENSO–ICP SAT relationship and also uncovers the underlying modulation factors, which has important implications for the seasonal prediction of the ICP temperature.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanyuan Guo, guoyyuan@fudan.edu.cn
Save
  • Annamalai, H., H. Okajima, and M. Watanabe, 2007: Possible impact of the Indian Ocean SST on the Northern Hemisphere circulation during El Niño. J. Climate, 20, 31643189, https://doi.org/10.1175/JCLI4156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, B. M., R. Fletcher, S.-Y. S. Wang, B. Zottoli, and C. Pottier, 2014: Monsoon extremes and society over the past millennium on mainland Southeast Asia. Quat. Sci. Rev., 95, 119, https://doi.org/10.1016/j.quascirev.2014.04.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buntoung, S., S. Janjai, M. Nunez, S. Pattarapanitchai, P. Nimnuan, and J. Pariyothon, 2020: Spatial and temporal changes of precipitable water vapour in Thailand. Phys. Geogr., 41, 467488, https://doi.org/10.1080/02723646.2019.1710433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caesar, J., and Coauthors, 2011: Changes in temperature and precipitation extremes over the Indo-Pacific region from 1971 to 2005. Int. J. Climatol., 31, 791801, https://doi.org/10.1002/joc.2118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Y. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and L. Song, 2018: The leading interannual variability modes of winter surface air temperature over Southeast Asia. Climate Dyn., 52, 47154734, https://doi.org/10.1007/s00382-018-4406-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and L. Song, 2019: Recent strengthened impact of the winter Arctic Oscillation on the Southeast Asian surface air temperature variation. Atmosphere, 10, 164, https://doi.org/10.3390/atmos10040164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Z. Wen, R. Wu, P. Zhao, and J. Cao, 2013: Influence of two types of El Niños on the East Asian climate during boreal summer: A numerical study. Climate Dyn., 43, 469481, https://doi.org/10.1007/s00382-013-1943-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., Z. Wen, R. Wu, X. Lin, and J. Wang, 2015: Relative importance of tropical SST anomalies in maintaining the Western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Climate Dyn., 46, 10271041, https://doi.org/10.1007/s00382-015-2630-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, G., and Coauthors, 2009: Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. Int. J. Climatol., 29, 19061925, https://doi.org/10.1002/joc.1979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., and C. Gnanaseelan, 2007: Basin-wide warming of the Indian Ocean during El Niño and Indian Ocean dipole years. Int. J. Climatol., 27, 14211438, https://doi.org/10.1002/joc.1482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., S.-P. Xie, H. Tokinaga, Y. M. Okumura, H. Kubota, N. Johnson, and X.-T. Zheng, 2012: Interdecadal variations in ENSO teleconnection to the Indo–Western Pacific for 1870–2007. J. Climate, 25, 17221744, https://doi.org/10.1175/JCLI-D-11-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., N. John, and C. Gnanaseelan, 2014: Interannual variability of surface air-temperature over India: Impact of ENSO and Indian Ocean sea surface temperature. Int. J. Climatol., 34, 416429, https://doi.org/10.1002/joc.3695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, J. P., and S. B. Feldstein, 2020: What drives the North Atlantic Oscillation’s temperature anomaly pattern? Part I: The growth and decay of the surface air temperature anomalies. J. Atmos. Sci., 77, 185198, https://doi.org/10.1175/JAS-D-19-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., L. Wang, and W. Chen, 2014: How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases? J. Climate, 27, 26822698, https://doi.org/10.1175/JCLI-D-13-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, C., and Coauthors, 2019: Land–atmosphere interaction over the Indo-China Peninsula during spring and its effect on the following summer climate over the Yangtze River basin. Climate Dyn., 53, 61816198, https://doi.org/10.1007/s00382-019-04922-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasparrini, A., and Coauthors, 2015: Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet, 386, 369375, https://doi.org/10.1016/S0140-6736(14)62114-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, F., and Coauthors, 2018: Assessment of trends and variability in surface air temperature on multiple high-resolution datasets over the Indochina Peninsula. Theor. Appl. Climatol., 135, 16091627, https://doi.org/10.1007/s00704-018-2457-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, X., W. Zhang, M. F. Stuecker, P. Liu, F.-F. Jin, and G. Tan, 2016: Decadal modulation of the ENSO–East Asian winter monsoon relationship by the Atlantic Multidecadal Oscillation. Climate Dyn., 49, 25312544, https://doi.org/10.1007/s00382-016-3465-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, X., W. Zhang, F.-F. Jin, and M. F. Stuecker, 2018: A new method for interpreting nonstationary running correlations and its application to the ENSO–EAWM relationship. Geophys. Res. Lett., 45, 327334, https://doi.org/10.1002/2017GL076564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghasemi, A. R., 2020: Influence of northwest Indian Ocean sea surface temperature and El Niño–Southern Oscillation on the winter precipitation in Iran. J. Water Climate Change, 11, 14811494, https://doi.org/10.2166/wcc.2019.274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, H., L. Wang, and W. Chen, 2019: Recently strengthened influence of ENSO on the wintertime East Asian surface air temperature. Atmosphere, 10, 720, https://doi.org/10.3390/atmos10110720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halpert, M. S., and C. F. Ropelewski, 1992: Surface temperature patterns associated with the Southern Oscillation. J. Climate, 5, 577593, https://doi.org/10.1175/1520-0442(1992)005<0577:STPAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, X., and S. He, 2017: Combined effect of ENSO-like and Atlantic multidecadal oscillation SSTAs on the interannual variability of the East Asian winter monsoon. J. Climate, 30, 26972716, https://doi.org/10.1175/JCLI-D-16-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., T. Zhou, and T. Li, 2019: Weakened anomalous western North Pacific anticyclone during an El Niño–decaying summer under a warmer climate: Dominant role of the weakened impact of the tropical Indian Ocean on the atmosphere. J. Climate, 32, 213230, https://doi.org/10.1175/JCLI-D-18-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., and H. Wang, 2013: Oscillating relationship between the East Asian winter monsoon and ENSO. J. Climate, 26, 98199838, https://doi.org/10.1175/JCLI-D-13-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., H. Wang, and J. Liu, 2013: Changes in the relationship between ENSO and Asia–Pacific midlatitude winter atmospheric circulation. J. Climate, 26, 33773393, https://doi.org/10.1175/JCLI-D-12-00355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, J. Zhu, M. L’Heureux, M. J. McPhaden, and J.-Y. Yu, 2020: The interdecadal shift of ENSO properties in 1999/2000: A review. J. Climate, 33, 44414462, https://doi.org/10.1175/JCLI-D-19-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, W., G. Huang, P. Huang, R. Wu, K. Hu, and W. Chen, 2019: Northwest Pacific anticyclonic anomalies during post–El Niño summers determined by the pace of El Niño decay. J. Climate, 32, 34873503, https://doi.org/10.1175/JCLI-D-18-0793.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and H. F. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 10691090, https://doi.org/10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., and S. I. An, 2019: Western North Pacific anticyclone change associated with the El Niño–Indian Ocean Dipole coupling. Int. J. Climatol., 39, 25052521, https://doi.org/10.1002/joc.5967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., S.-W. Yeh, and E.-C. Chang, 2013: Combined effect of El Niño–Southern Oscillation and Pacific decadal oscillation on the East Asian winter monsoon. Climate Dyn., 42, 957971, https://doi.org/10.1007/s00382-013-1730-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., S.-I. An, S.-Y. Jun, H.-J. Park, and S.-W. Yeh, 2016: ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacific anticyclone. Climate Dyn., 49, 11571179, https://doi.org/10.1007/s00382-016-3371-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamchin, M., W. K. Lee, S. W. Jeon, S. W. Wang, C. H. Lim, C. Song, and M. Sung, 2018: Long-term trend and correlation between vegetation greenness and climate variables in Asia based on satellite data. Sci. Total Environ., 618, 10891095, https://doi.org/10.1016/j.scitotenv.2017.09.145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, N. Johnson, S. B. Feldstein, and D. Pollard, 2011: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367, https://doi.org/10.1175/2011JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, B. Wu, T. Zhou, C.-P. Chang, and R. Zhang, 2018: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 9871006, https://doi.org/10.1007/s13351-017-7147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X. X., 2020: Heat wave trends in Southeast Asia during 1979–2018: The impact of humidity. Sci. Total Environ., 721, 137664, https://doi.org/10.1016/j.scitotenv.2020.137664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L., C. Chen, and M. Luo, 2018: Impacts of El Niño–Southern Oscillation on heat waves in the Indochina peninsula. Atmos. Sci. Lett., 19, e856, https://doi.org/10.1002/asl.856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, M., and N.-C. Lau, 2017: Synoptic characteristics, atmospheric controls, and long-term changes of heat waves over the Indochina Peninsula. Climate Dyn., 51, 27072723, https://doi.org/10.1007/s00382-017-4038-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luong, L. M. T., D. Phung, P. D. Sly, T. N. Dang, L. Morawska, and P. K. Thai, 2019: Effects of temperature on hospitalisation among pre-school children in Hanoi, Vietnam. Environ. Sci. Pollut. Res. Int., 26, 26032612, https://doi.org/10.1007/s11356-018-3737-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manton, M. J., and Coauthors, 2001: Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int. J. Climatol., 21, 269284, https://doi.org/10.1002/joc.610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marjuki, G. van der Schrier, A. M. G. Klein Tank, E. J. M. van den Besselaar, Nurhayati, and Y. S. Swarinoto, 2016: Observed trends and variability in climate indices relevant for crop yields in Southeast Asia. J. Climate, 29, 26512669, https://doi.org/10.1175/JCLI-D-14-00574.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostropic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mie Sein, Z. M., I. Ullah, S. Syed, X. Zhi, K. Azam, and G. Rasool, 2021: Interannual variability of air temperature over Myanmar: The influence of ENSO and IOD. Climate, 9, 35, https://doi.org/10.3390/cli9020035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, https://doi.org/10.1175/JCLI-D-12-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, D.-Q., J. Renwick, and J. McGregor, 2014: Variations of surface temperature and rainfall in Vietnam from 1971 to 2010. Int. J. Climatol., 34, 249264, https://doi.org/10.1002/joc.3684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 2005: The El Niño–Southern Oscillation and daily temperature extremes in east Asia and the west Pacific. Geophys. Res. Lett., 32, L16714, https://doi.org/10.1029/2005GL022621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., and Coauthors, 2004: Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA, 101, 99719975, https://doi.org/10.1073/pnas.0403720101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phosri, A., T. Sihabut, and C. Jaikanlaya, 2020: Short-term effects of diurnal temperature range on hospital admission in Bangkok, Thailand. Sci. Total Environ., 717, 137202, https://doi.org/10.1016/j.scitotenv.2020.137202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, A., and S. Nigam, 2019: The northeast winter monsoon over the Indian subcontinent and Southeast Asia: Evolution, interannual variability, and model simulations. J. Climate, 32, 231249, https://doi.org/10.1175/JCLI-D-18-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J., and W. Qian, 2018: Asymmetry of two types of ENSO in the transition between the East Asian winter monsoon and the ensuing summer monsoon. Climate Dyn., 51, 39073926, https://doi.org/10.1007/s00382-018-4119-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sooktawee, S., U. Humphries, A. Limsakul, and P. Wongwises, 2014: Spatio-temporal variability of winter monsoon over the Indochina Peninsula. Atmosphere, 5, 101121, https://doi.org/10.3390/atmos5010101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thirumalai, K., P. N. DiNezio, Y. Okumura, and C. Deser, 2017: Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nat. Commun., 8, 15 531, https://doi.org/10.1038/ncomms15531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2002: Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107, 4065, https://doi.org/10.1029/2000JD000298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., W. Wang, D. Wang, and Q. Wang, 2006: Interannual variability of the South China Sea associated with El Niño. J. Geophys. Res., 111, C03023, https://doi.org/10.1029/2005JC003333.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and S. He, 2012: Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s. Chin. Sci. Bull., 57, 35353540, https://doi.org/10.1007/s11434-012-5285-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, and R. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett., 35, L20702, https://doi.org/10.1029/2008GL035287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and F.-f. Jin, 2002: Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys. Res. Lett., 29, 1478, https://doi.org/10.1029/2001GL014318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, https://doi.org/10.1175/2008JCLI2710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010a: Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J. Climate, 23, 48074822, https://doi.org/10.1175/2010JCLI3222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010b: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, https://doi.org/10.1175/2010JCLI3300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., S. Yang, and Z. Zhang, 2012: Different evolutions of the Philippine Sea anticyclone between the eastern and central Pacific El Niño: Possible effects of Indian Ocean SST. J. Climate, 25, 78677883, https://doi.org/10.1175/JCLI-D-12-00004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ’86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., T. Li, M. Wen, and L. Liu, 2014: Role of intraseasonal oscillation in asymmetric impacts of El Niño and La Niña on the rainfall over southern China in boreal winter. Climate Dyn., 45, 559567, https://doi.org/10.1007/s00382-014-2207-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, S., F. Ge, Y. Fan, L. Zhang, F. Sielmann, K. Fraedrich, and X. Zhi, 2020a: Conspicuous temperature extremes over Southeast Asia: Seasonal variations under 1.5°C and 2°C global warming. Climatic Change, 160, 343360, https://doi.org/10.1007/s10584-019-02640-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, S., and Coauthors, 2020b: Seasonal temperature response over the Indochina Peninsula to a worst-case high-emission forcing: A study with the regionally coupled model ROM. Theor. Appl. Climatol., 142, 613622, https://doi.org/10.1007/s00704-020-03345-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 450 49 0
Full Text Views 308 179 30
PDF Downloads 327 176 28