The Role of Continental Topography in the Present-Day Ocean’s Mean Climate

R. J. Stouffer aDepartment of Geosciences, The University of Arizona, Tucson, Arizona

Search for other papers by R. J. Stouffer in
Current site
Google Scholar
PubMed
Close
,
J. L. Russell aDepartment of Geosciences, The University of Arizona, Tucson, Arizona

Search for other papers by J. L. Russell in
Current site
Google Scholar
PubMed
Close
,
R. L. Beadling aDepartment of Geosciences, The University of Arizona, Tucson, Arizona
bUniversity Corporation for Atmospheric Research, Boulder, Colorado
cAtmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by R. L. Beadling in
Current site
Google Scholar
PubMed
Close
,
A. J. Broccoli dDepartment of Environmental Sciences and Institute for Earth, Ocean, and Atmospheric Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by A. J. Broccoli in
Current site
Google Scholar
PubMed
Close
,
J. P. Krasting eGeophysical Fluid Dynamics Laboratory, NOAA, Princeton, New Jersey

Search for other papers by J. P. Krasting in
Current site
Google Scholar
PubMed
Close
,
S. Malyshev eGeophysical Fluid Dynamics Laboratory, NOAA, Princeton, New Jersey

Search for other papers by S. Malyshev in
Current site
Google Scholar
PubMed
Close
, and
Z. Naiman fTuSimple, Inc., Tucson, Arizona

Search for other papers by Z. Naiman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climate models of varying complexity have been used for decades to investigate the impact of mountains on the atmosphere and surface climate. Here, the impact of removing the continental topography on the present-day ocean climate is investigated using three different climate models spanning multiple generations. An idealized study is performed where all present-day land surface topography is removed and the equilibrium change in the oceanic mean state with and without the mountains is studied. When the mountains are removed, changes found in all three models include a weakening of the Atlantic meridional overturning circulation and associated SST cooling in the subpolar North Atlantic. The SSTs also warm in all the models in the western North Pacific Ocean associated with a northward shift of the atmospheric jet and the Kuroshio. In the ocean interior, the magnitude of the temperature and salinity response to removing the mountains is relatively small and the sign and magnitude of the changes generally vary among the models. These different interior ocean responses are likely related to differences in the mean state of the control integrations due to differences in resolution and associated subgrid-scale mixing parameterizations. Compared to the results from 4xCO2 simulations, the interior ocean temperature changes caused by mountain removal are relatively small; however, the oceanic circulation response and Northern Hemisphere near-surface temperature changes are of a similar magnitude to the response to such radiative forcing changes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ronald J. Stouffer, ronaldstouffer@arizona.edu

Abstract

Climate models of varying complexity have been used for decades to investigate the impact of mountains on the atmosphere and surface climate. Here, the impact of removing the continental topography on the present-day ocean climate is investigated using three different climate models spanning multiple generations. An idealized study is performed where all present-day land surface topography is removed and the equilibrium change in the oceanic mean state with and without the mountains is studied. When the mountains are removed, changes found in all three models include a weakening of the Atlantic meridional overturning circulation and associated SST cooling in the subpolar North Atlantic. The SSTs also warm in all the models in the western North Pacific Ocean associated with a northward shift of the atmospheric jet and the Kuroshio. In the ocean interior, the magnitude of the temperature and salinity response to removing the mountains is relatively small and the sign and magnitude of the changes generally vary among the models. These different interior ocean responses are likely related to differences in the mean state of the control integrations due to differences in resolution and associated subgrid-scale mixing parameterizations. Compared to the results from 4xCO2 simulations, the interior ocean temperature changes caused by mountain removal are relatively small; however, the oceanic circulation response and Northern Hemisphere near-surface temperature changes are of a similar magnitude to the response to such radiative forcing changes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ronald J. Stouffer, ronaldstouffer@arizona.edu
Save
  • Abe, M., T. Yasunari, and A. Kitoh, 2004: Effects of large-scale orography on the coupled atmosphere–ocean system in the tropical Indian and Pacific Oceans in boreal summer. J. Meteor. Soc. Japan, 82, 745759, https://doi.org/10.2151/jmsj.2004.745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, J. W., G. A. Vecchi, and S. Bordoni, 2019: The direct and ocean-mediated influence of Asian orography on tropical precipitation and cyclones. Climate Dyn., 53, 805824, https://doi.org/10.1007/s00382-019-04615-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barron, E. J., 1985: Explanations of the tertiary global cooling trend. Palaeogeogr. Palaeoclimatol. Palaeoecol., 50, 4561, https://doi.org/10.1016/S0031-0182(85)80005-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barron, E. J., and W. Washington, 1984: The role of geographic variables in explaining paleoclimates: Results from Cretaceous climate model sensitivity studies. J. Geophys. Res., 89, 12671279, https://doi.org/10.1029/JD089iD01p01267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beadling, R. L., and Coauthors, 2020: Representation of Southern Ocean properties across Coupled Model Intercomparison Project generations: CMIP3 to CMIP6. J. Climate, 33, 65556581, https://doi.org/10.1175/JCLI-D-19-0970.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G., 2000: A study of atmosphere–ocean predictability on long time scales. Climate Dyn., 16, 469477, https://doi.org/10.1007/s003820050340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218222, https://doi.org/10.1038/nature08707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and Z. Kuang, 2013: Sensitivity of the South Asian monsoon to elevated and non-elevated heating. Sci. Rep., 3, 1192, https://doi.org/10.1038/srep01192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2013: World Ocean Database 2013. NOAA Atlas NESDIS 72, 209 pp., https://doi.org/10.7289/V5NZ85MT.

  • Broccoli, A. J., and S. Manabe, 1992: The effects of orography on midlatitude Northern Hemisphere dry climates. J. Climate, 5, 11811201, https://doi.org/10.1175/1520-0442(1992)005<1181:TEOOOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1986: High-latitude salinity effects and interhemispheric thermohaline circulation. Nature, 323, 301304, https://doi.org/10.1038/323301a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciais, P., and Coauthors, 2013: Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 465570, https://doi.org/10.1017/CBO9781107415324.015.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 10291136.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, Cambridge University Press, 526582.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., R. Stouffer, K. Dixon, M. Spelman, T. Knutson, A. Broccoli, P. Kushner, and R. Wetherald, 2002: Review of simulations of climate variability and change with the GFDL R30 coupled climate model. Climate Dyn., 19, 555574, https://doi.org/10.1007/s00382-002-0249-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, https://doi.org/10.1175/JCLI-D-11-00560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2013: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Climate, 26, 22472267, https://doi.org/10.1175/JCLI-D-12-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fallah, B., U. Cubasch, K. Pömmel, and S. Sodoudi, 2016: A numerical model study on the behaviour of Asian summer monsoon and AMOC due to orographic forcing of Tibetan Plateau. Climate Dyn., 47, 14851495, https://doi.org/10.1007/s00382-015-2914-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, R., and C. J. Poulsen, 2014: Andean elevation control on tropical Pacific climate and ENSO. Climate Dyn., 47, 14851495, https://doi.org/10.1007/s00382-015-2914-5.

    • Search Google Scholar
    • Export Citation
  • Gebbie, G., and P. Huybers, 2019: The Little Ice Age and 20th-century deep Pacific cooling. Science, 363, 7074, https://doi.org/10.1126/science.aar8413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 1995: Some aspects of the circulation in ocean basins with isopycnals intersecting the sloping boundaries. Ph.D. thesis, University of Washington, 244 pp. [Available from University Microfilms, 1490 Eisenhower Place, P.O. Box 975, Ann Arbor, MI 48106.]

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., 1997: Mountain uplift and surface temperature changes. Geophys. Res. Lett., 24, 185188, https://doi.org/10.1029/96GL03953.

  • Kitoh, A., 2004: Effects of mountain uplift on East Asian summer climate investigated by a coupled atmosphere–ocean GCM. J. Climate, 17, 783802, https://doi.org/10.1175/1520-0442(2004)017<0783:EOMUOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitoh, A., 2007: ENSO modulation by mountain uplift. Climate Dyn., 28, 781796, https://doi.org/10.1007/s00382-006-0209-6.

  • Krasting, J. P., R. J. Stouffer, S. M. Griffies, R. W. Hallberg, S. L. Malyshev, B. L. Samuels, and L. T. Sentman, 2018: Role of ocean model formulation in climate response uncertainty. J. Climate, 31, 93139333, https://doi.org/10.1175/JCLI-D-18-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., and P. Guetter, 1989: Sensitivity of climate to late Cenozoic uplift in Southern Asia and the American West: Numerical experiments. J. Geophys., 94, 18 39318 407, https://doi.org/10.1029/JD094iD15p18393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., W. L. Prell, and W. F. Ruddiman, 1993: Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J. Geol., 101, 177190, https://doi.org/10.1086/648215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., B. Wang, K.-H. Seo, K.-J. Ha, A. Kitoh, and J. Liu, 2015: Effects of mountain uplift on global monsoon precipitation. Asia-Pac. J. Atmos. Sci., 51, 275290, https://doi.org/10.1007/s13143-015-0077-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J. L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, https://doi.org/10.1175/JCLI4272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutsko, N. J., J. W. Baldwin, and T. W. Cronin, 2019: The impact of large-scale orography on Northern Hemisphere winter synoptic temperature variability. J. Climate, 32, 57995814, https://doi.org/10.1175/JCLI-D-19-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and T. B. Terpstra, 1974: The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci., 31, 342, https://doi.org/10.1175/1520-0469(1974)031<0003:TEOMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1988: Two stable equilibria of a coupled ocean–atmosphere model. J. Climate, 1, 841866, https://doi.org/10.1175/1520-0442(1988)001<0841:TSEOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and A. Broccoli, 1990: Mountains and arid climates of middle latitudes. Science, 247, 192195, https://doi.org/10.1126/science.247.4939.192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4, 785818, https://doi.org/10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maroon, E., D. M. W. Frierson, and D. S. Battisti, 2015: The tropical precipitation response to Andes topography and ocean heat fluxes in an aquaplanet model. J. Climate, 28, 381398, https://doi.org/10.1175/JCLI-D-14-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumoto, K., 2007: Radiocarbon‐based circulation age of the world oceans. J. Geophys. Res., 112, C09004, https://doi.org/10.1029/2007JC004095.

  • Naiman, Z., P. J. Goodman, J. P. Krasting, S. L. Malyshev, J. L. Russell, R. J. Stouffer, and A. T. Wittenberg, 2017: Impact of mountains on tropical circulation in two Earth system models. J. Climate, 30, 41494163, https://doi.org/10.1175/JCLI-D-16-0512.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., K. W. Dixon, and A. Rosati, 1991: The GFDL modular ocean model users guide. GFDL Ocean Group Tech. Rep. 2, 46 pp., https://mom-ocean.github.io/assets/pdfs/MOM1_manual.pdf.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., T. M. Silva, K. Fraedrich, E. Kirk, and F. Lunkeit, 2011: Effects of mountains and ice sheets on global ocean circulation. J. Climate, 24, 28142829, https://doi.org/10.1175/2010JCLI3982.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sijp, W. P., and M. H. England, 2004: Effect of the Drake Passage throughflow on global climate. J. Phys. Oceanogr., 34, 12541266, https://doi.org/10.1175/1520-0485(2004)034<1254:EOTDPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, H. K. A., C. M. Bitz, and D. M. W. Frierson, 2016: The global climate response to lowering surface orography of Antarctica and the importance of atmosphere–ocean coupling. J. Climate, 29, 41374153, https://doi.org/10.1175/JCLI-D-15-0442.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinha, B., A. T. Blaker, J. J. M. Hirschi, S. Bonham, M. Brand, S. Josey, R. S. Smith, and J. Marotzke, 2012: Mountain ranges favour vigorous Atlantic meridional overturning. Geophys. Res. Lett., 39, L02705, https://doi.org/10.1029/2011GL050485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoner, A. M. K., K. Hayhoe, and D. J. Wuebbles, 2009: Assessing circulation models of atmospheric teleconnection patterns. J Climate, 22, 43484372, https://doi.org/10.1175/2009JCLI2577.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and D. S. Battisti, 2007a: Processes controlling the mean tropical Pacific precipitation pattern. Part I: The Andes and the eastern Pacific ITCZ. J. Climate, 20, 34343451, https://doi.org/10.1175/JCLI4198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and D. S. Battisti, 2007b: Processes controlling the mean tropical Pacific precipitation pattern. Part II: The SPCZ and the southeast Pacific dry zone. J. Climate, 20, 56965706, https://doi.org/10.1175/2007JCLI1656.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thiele, G., and J. L. Sarmiento, 1990: Tracer dating and ocean ventilation. J. Geophys. Res., 95, 93779391, https://doi.org/10.1029/JC095iC06p09377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and Coauthors, 2001: The UVic Earth System Climate Model: Model description, climatology and applications to past, present and future climates. Atmos.–Ocean, 39, 361428, https://doi.org/10.1080/07055900.2001.9649686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H., Y. Wang, and S. P. Xie, 2004: Effects of the Andes on eastern Pacific climate: A regional atmospheric model study. J. Climate, 17, 589602, https://doi.org/10.1175/1520-0442(2004)017<0589:EOTAOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanna, L., S. Khatiwala, J. M. Gregory, J. Ison, and P. Heimbach, 2019: Global reconstruction of the historical ocean heat storage and transport. Proc. Natl. Acad. Sci. USA, 116, 11261131, https://doi.org/10.1073/pnas.1808838115.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 388 0 0
Full Text Views 1831 1273 549
PDF Downloads 483 115 11