Reconstructing Arctic Sea Ice over the Common Era Using Data Assimilation

M. Kathleen Brennan aDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by M. Kathleen Brennan in
Current site
Google Scholar
PubMed
Close
and
Gregory J. Hakim aDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Gregory J. Hakim in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Arctic sea ice decline in recent decades has been dramatic; however, few long-term records of Arctic sea ice exist to put such a decline in context. Here we employ an ensemble Kalman filter data assimilation approach to reconstruct Arctic sea ice concentration over the last two millennia by assimilating temperature-sensitive proxy records with ensembles drawn from last millennium climate model simulations. We first test the efficacy of this method using pseudoproxy experiments. Results show good agreement between the target and reconstructed total Arctic sea ice extent (R2 value and coefficient of efficiency values of 0.51 and 0.47 for perfect model experiments and 0.43 and 0.43 for imperfect model experiments). Imperfect model experiments indicate that the reconstructions inherit some bias from the model prior. We assimilate 487 temperature-sensitive proxy records with two climate model simulations to produce two gridded reconstructions of Arctic sea ice over the last two millennia. These reconstructions show good agreement with satellite observations between 1979 and 1999 CE for total Arctic sea ice extent with an R2 value and coefficient of efficiency of about 0.60 and 0.50, respectively, for both models. Regional quantities derived from these reconstructions show encouraging similarities with independent reconstructions and sea ice sensitive proxy records from the Barents Sea, Baffin Bay, and East Greenland Sea. The reconstructions show a positive trend in Arctic sea ice extent between around 750 and 1820 CE, and increases during years with large volcanic eruptions that persist for about 5 years. Trend analysis of total Arctic sea ice extent reveals that for time periods longer than 30 years, the satellite era decline in total Arctic sea ice extent is unprecedented over the last millennium.

Significance Statement

Areal coverage of Arctic sea ice is a critical aspect of the climate system that has been changing rapidly in recent decades. Prior to the advent of satellite observations, sparse observations of Arctic sea ice make it difficult to put the current changes in context. Here we reconstruct annual averages of Arctic sea ice coverage for the last two millennia by combining temperature-sensitive proxy records (i.e., ice cores, tree rings, and corals) with climate model simulations using a statistical technique called data assimilation. We find large interannual changes in Arctic sea ice coverage prior to 1850 that are associated with volcanic eruptions, with a steady rise in Arctic sea ice coverage between 750 and 1820 CE. The satellite-period loss of sea ice has no analog during the last millennium.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Kathleen Brennan, mkb22@uw.edu

Abstract

Arctic sea ice decline in recent decades has been dramatic; however, few long-term records of Arctic sea ice exist to put such a decline in context. Here we employ an ensemble Kalman filter data assimilation approach to reconstruct Arctic sea ice concentration over the last two millennia by assimilating temperature-sensitive proxy records with ensembles drawn from last millennium climate model simulations. We first test the efficacy of this method using pseudoproxy experiments. Results show good agreement between the target and reconstructed total Arctic sea ice extent (R2 value and coefficient of efficiency values of 0.51 and 0.47 for perfect model experiments and 0.43 and 0.43 for imperfect model experiments). Imperfect model experiments indicate that the reconstructions inherit some bias from the model prior. We assimilate 487 temperature-sensitive proxy records with two climate model simulations to produce two gridded reconstructions of Arctic sea ice over the last two millennia. These reconstructions show good agreement with satellite observations between 1979 and 1999 CE for total Arctic sea ice extent with an R2 value and coefficient of efficiency of about 0.60 and 0.50, respectively, for both models. Regional quantities derived from these reconstructions show encouraging similarities with independent reconstructions and sea ice sensitive proxy records from the Barents Sea, Baffin Bay, and East Greenland Sea. The reconstructions show a positive trend in Arctic sea ice extent between around 750 and 1820 CE, and increases during years with large volcanic eruptions that persist for about 5 years. Trend analysis of total Arctic sea ice extent reveals that for time periods longer than 30 years, the satellite era decline in total Arctic sea ice extent is unprecedented over the last millennium.

Significance Statement

Areal coverage of Arctic sea ice is a critical aspect of the climate system that has been changing rapidly in recent decades. Prior to the advent of satellite observations, sparse observations of Arctic sea ice make it difficult to put the current changes in context. Here we reconstruct annual averages of Arctic sea ice coverage for the last two millennia by combining temperature-sensitive proxy records (i.e., ice cores, tree rings, and corals) with climate model simulations using a statistical technique called data assimilation. We find large interannual changes in Arctic sea ice coverage prior to 1850 that are associated with volcanic eruptions, with a steady rise in Arctic sea ice coverage between 750 and 1820 CE. The satellite-period loss of sea ice has no analog during the last millennium.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Kathleen Brennan, mkb22@uw.edu

Supplementary Materials

    • Supplemental Materials (pdf 7.17 MB)
Save
  • Alekseev, G., N. Glok, and A. Smirnov, 2016: On assessment of the relationship between changes of sea ice extent and climate in the Arctic. Int. J. Climatol., 36, 34073412, https://doi.org/10.1002/joc.4550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anchukaitis, K. J., and Coauthors, 2017: Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quat. Sci. Rev., 163, 122, https://doi.org/10.1016/j.quascirev.2017.02.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annan, J., J. Hargreaves, N. Edwards, and R. Marsh, 2005: Parameter estimation in an intermediate complexity Earth system model using an ensemble Kalman filter. Ocean Modell., 8, 135154, https://doi.org/10.1016/j.ocemod.2003.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atwood, A. R., E. Wu, D. M. W. Frierson, D. S. Battisti, and J. P. Sachs, 2016: Quantifying climate forcings and feedbacks over the last millennium in the CMIP5-PMIP3 models. J. Climate, 29, 11611178, https://doi.org/10.1175/JCLI-D-15-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belt, S. T., G. Massé, S. J. Rowland, M. Poulin, C. Michel, and B. LeBlanc, 2007: A novel chemical fossil of palaeo sea ice: IP25. Org. Geochem., 38, 1627, https://doi.org/10.1016/j.orggeochem.2006.09.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhend, J., J. Franke, D. Folini, M. Wild, and S. Brönnimann, 2012: An ensemble-based approach to climate reconstructions. Climate Past, 8, 963976, https://doi.org/10.5194/cp-8-963-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonan, D. B., and E. Blanchard-Wrigglesworth, 2020: Nonstationary teleconnection between the Pacific Ocean and Arctic sea ice. Geophys. Res. Lett., 47, e2019GL085666, https://doi.org/10.1029/2019GL085666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brennan, M. K., G. J. Hakim, and E. Blanchard-Wrigglesworth, 2020: Arctic sea-ice variability during the Instrumental Era. Geophys. Res. Lett., 47, e2019GL086843, https://doi.org/10.1029/2019GL086843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, R., M. Connolly, and W. Soon, 2017: Re-calibration of Arctic sea ice extent datasets using Arctic surface air temperature records. Hydrol. Sci. J., 62, 13171340, https://doi.org/10.1080/02626667.2017.1324974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, https://doi.org/10.1175/2009JCLI3053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vernal, A., R. Gersonde, H. Goosse, M.-S. Seidenkrantz, and E. W. Wolff, 2013: Sea ice in the paleoclimate system: The challenge of reconstructing sea ice from proxies—An introduction. Quat. Sci. Rev., 79, 18, https://doi.org/10.1016/j.quascirev.2013.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and Coauthors, 2017: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Climate Change, 7, 289295, https://doi.org/10.1038/nclimate3241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirren, S., and G. J. Hakim, 2005: Toward the assimilation of time-averaged observations. Geophys. Res. Lett., 32, L04804, https://doi.org/10.1029/2004GL021444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emile-Geay, J., and Coauthors, 2017: A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data, 4, 170088, https://doi.org/10.1038/sdata.2017.88.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M., A. Jahn, and L. Polvani, 2019: Nonuniform contribution of internal variability to recent Arctic sea ice loss. J. Climate, 32, 40394053, https://doi.org/10.1175/JCLI-D-18-0864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M., L. M. Polvani, L. Sun, and C. Deser, 2020: Tropical climate responses to projected Arctic and Antarctic sea-ice loss. Nat. Geosci., 13, 275281, https://doi.org/10.1038/s41561-020-0546-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel, 2017: Sea ice index, version 3. National Snow and Ice Data Center, accessed 15 February 2019, https://doi.org/10.7265/N5K072F8.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosse, H., H. Renssen, A. Timmermann, R. S. Bradley, and M. E. Mann, 2006: Using paleoclimate proxy-data to select optimal realisations in an ensemble of simulations of the climate of the past millennium. Climate Dyn., 27, 165184, https://doi.org/10.1007/s00382-006-0128-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosse, H., D. Roche, A. Mairesse, and M. Berger, 2013: Modelling past sea ice changes. Quat. Sci. Rev., 79, 191206, https://doi.org/10.1016/j.quascirev.2013.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., P. A. Stott, D. J. Cresswell, N. A. Rayner, C. Gordon, and D. M. H. Sexton, 2002: Recent and future changes in Arctic sea ice simulated by the HadCM3 AOGCM. Geophys. Res. Lett., 29, 2175, https://doi.org/10.1029/2001GL014575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., J. Emile-Geay, E. J. Steig, D. Noone, D. M. Anderson, R. Tardif, N. Steiger, and W. A. Perkins, 2016: The last millennium climate reanalysis project: Framework and first results. J. Geophys. Res. Atmos., 121, 67456764, https://doi.org/10.1002/2016JD024751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halfar, J., W. H. Adey, A. Kronz, S. Hetzinger, E. Edinger, and W. W. Fitzhugh, 2013: Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy. Proc. Natl. Acad. Sci. USA, 110, 19 73719 741, https://doi.org/10.1073/pnas.1313775110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, https://doi.org/10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Hegerl, G. C., T. J. Crowley, M. Allen, W. T. Hyde, H. N. Pollack, J. Smerdon, and E. Zorita, 2007: Detection of human influence on a new, validated 1500-year temperature reconstruction. J. Climate, 20, 650666, https://doi.org/10.1175/JCLI4011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and Coauthors, 2010: Climate and carbon-cycle variability over the last millennium. Climate Past, 6, 723737, https://doi.org/10.5194/cp-6-723-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufman, D. S., and Coauthors, 2009: Recent warming reverses long-term Arctic cooling. Science, 325, 12361239, https://doi.org/10.1126/science.1173983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerwin, M. W., J. T. Overpeck, R. S. Webb, A. DeVernal, D. H. Rind, and R. J. Healy, 1999: The role of oceanic forcing in mid-Holocene Northern Hemisphere climatic change. Paleoceanography, 14, 200210, https://doi.org/10.1029/1998PA900011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinnard, C., C. M. Zdanowicz, D. A. Fisher, E. Isaksson, A. de Vernal, and L. G. Thompson, 2011: Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature, 479, 509512, https://doi.org/10.1038/nature10581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, F., H. Goosse, A. Mairesse, and A. de Vernal, 2014: Model–data comparison and data assimilation of mid-Holocene Arctic sea ice concentration. Climate Past, 10, 11451163, https://doi.org/10.5194/cp-10-1145-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landrum, L., B. L. Otto-Bliesner, E. R. Wahl, A. Conley, P. J. Lawrence, N. Rosenbloom, and H. Teng, 2013: Last millennium climate and its variability in CCSM4. J. Climate, 26, 10851111, https://doi.org/10.1175/JCLI-D-11-00326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102, 409418, https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., and A. V. Fedorov, 2019: Global impacts of Arctic sea ice loss mediated by the Atlantic meridional overturning circulation. Geophys. Res. Lett., 46, 944952, https://doi.org/10.1029/2018GL080602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., and R. Knutti, 2012: September Arctic sea ice predicted to disappear near 2°C global warming above present. J. Geophys. Res., 117, D06104, https://doi.org/10.1029/2011JD016709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., Z. Zhang, M. K. Hughes, R. S. Bradley, S. K. Miller, S. Rutherford, and F. Ni, 2008: Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl. Acad. Sci. USA, 105, 13 25213 257, https://doi.org/10.1073/pnas.0805721105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massé, G., S. J. Rowland, M. A. Sicre, J. Jacob, E. Jansen, and S. T. Belt, 2008: Abrupt climate changes for Iceland during the last millennium: Evidence from high resolution sea ice reconstructions. Earth Planet. Sci. Lett., 269, 565569, https://doi.org/10.1016/j.epsl.2008.03.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKay, N. P., and D. S. Kaufman, 2014: An extended Arctic proxy temperature database for the past 2,000 years. Sci. Data, 1, 140026, https://doi.org/10.1038/sdata.2014.26.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, W. N., and Coauthors, 2014: Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys., 52, 185217, https://doi.org/10.1002/2013RG000431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, W. N., F. Fetterer, M. Savoie, S. Mallory, R. Duerr, and J. Stroeve, 2017: NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 3. National Snow and Ice Data Center, accessed 15 September 2020, https://doi.org/10.7265/N59P2ZTG.

    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290, https://doi.org/10.1016/0022-1694(70)90255-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oke, P. R., J. Allen, R. N. Miller, G. D. Egbert, and P. M. Kosro, 2002: Assimilation of surface velocity data into a primitive equation coastal ocean model. J. Geophys. Res., 107, 3122, https://doi.org/10.1029/2000JC000511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olonscheck, D., T. Mauritsen, and D. Notz, 2019: Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nat. Geosci., 12, 430434, https://doi.org/10.1038/s41561-019-0363-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, L. A., M. K. Brennan, R. C. Wills, and C. Proistosescu, 2020: Magnitudes and spatial patterns of interdecadal temperature variability in CMIP6. Geophys. Res. Lett., 47, e2019GL086588, https://doi.org/10.1029/2019GL086588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauling, A. G., M. Bushuk, and C. M. Bitz, 2021: Robust inter-hemispheric asymmetry in the response to symmetric volcanic forcing in model large ensembles. Geophys. Res. Lett., 48, e2021GL092558, https://doi.org/10.1029/2021GL092558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, G., W. N. Meier, D. J. Scott, and M. H. Savoie, 2013: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311318, https://doi.org/10.5194/essd-5-311-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyak, L., and Coauthors, 2010: History of sea ice in the Arctic. Quat. Sci. Rev., 29, 17571778, https://doi.org/10.1016/j.quascirev.2010.02.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridgwell, A., J. C. Hargreaves, N. R. Edwards, J. D. Annan, T. M. Lenton, R. Marsh, A. Yool, and A. Watson, 2007: Marine geochemical data assimilation in an efficient Earth system model of global biogeochemical cycling. Biogeosciences, 4, 87104, https://doi.org/10.5194/bg-4-87-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenblum, E., and I. Eisenman, 2017: Sea ice trends in climate models only accurate in runs with biased global warming. J. Climate, 30, 62656278, https://doi.org/10.1175/JCLI-D-16-0455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakakibara, C., 2008: “Our home is drowning”: Iñupiat storytelling and climate change in Point Hope, Alaska. Geogr. Rev., 98, 456475, https://doi.org/10.1111/j.1931-0846.2008.tb00312.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2011: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci. Model Dev., 4, 3345, https://doi.org/10.5194/gmd-4-33-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schurer, A. P., S. F. B. Tett, and G. C. Hegerl, 2014: Small influence of solar variability on climate over the past millennium. Nat. Geosci., 7, 104108, https://doi.org/10.1038/ngeo2040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweiger, A., R. Lindsay, J. Zhang, M. Steele, H. Stern, and R. Kwok, 2011: Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res., 116, C00D06, https://doi.org/10.1029/2011JC007084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweiger, A., K. R. Wood, and J. Zhang, 2019: Arctic sea ice volume variability over 1901–2010: A model-based reconstruction. J. Climate, 32, 47314752, https://doi.org/10.1175/JCLI-D-19-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sicre, M.-A., and Coauthors, 2013: Sea surface temperature and sea ice variability in the subpolar North Atlantic from explosive volcanism of the late thirteenth century. Geophys. Res. Lett., 40, 55265530, https://doi.org/10.1002/2013GL057282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigl, M., and Coauthors, 2015: Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 523, 543549, https://doi.org/10.1038/nature14565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, H. K. A., G. J. Hakim, R. Tardif, J. Emile-Geay, and D. C. Noone, 2018: Insights into Atlantic multidecadal variability using the last millennium reanalysis framework. Climate Past, 14, 157174, https://doi.org/10.5194/cp-14-157-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiger, N. J., G. J. Hakim, E. J. Steig, D. S. Battisti, and G. H. Roe, 2014: Assimilation of time-averaged pseudoproxies for climate reconstruction. J. Climate, 27, 426441, https://doi.org/10.1175/JCLI-D-12-00693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, S., J. T. Fasullo, B. L. Otto-Bliesner, R. A. Tomas, and C. Gao, 2017: Role of eruption season in reconciling model and proxy responses to tropical volcanism. Proc. Natl. Acad. Sci. USA, 114, 18221826, https://doi.org/10.1073/pnas.1612505114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., and D. Notz, 2015: Insights on past and future sea-ice evolution from combining observations and models. Global Planet. Change, 135, 119132, https://doi.org/10.1016/j.gloplacha.2015.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, https://doi.org/10.1029/2007GL029703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tardif, R., and Coauthors, 2019: Last Millennium reanalysis with an expanded proxy database and seasonal proxy modeling. Climate Past, 15, 12511273, https://doi.org/10.5194/cp-15-1251-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., C. Deser, and L. Sun, 2016: The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Climate, 29, 68416859, https://doi.org/10.1175/JCLI-D-15-0651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vare, L. L., G. Massé, and S. T. Belt, 2010: A biomarker-based reconstruction of sea ice conditions for the Barents Sea in recent centuries. Holocene, 20, 637643, https://doi.org/10.1177/0959683609355179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., F. Fetterer, J. S. Stewart, and W. L. Chapman, 2017: A database for depicting Arctic sea ice variations back to 1850. Geogr. Rev., 107, 89107, https://doi.org/10.1111/j.1931-0846.2016.12195.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., W. L. Chapman, F. Fetterer, and J. S. Stewart, 2019: Gridded monthly sea ice extent and concentration, 1850 onward, version 2. National Snow and Ice Data Center, accessed 24 May 2021, https://doi.org/10.7265/jj4s-tq79.

    • Search Google Scholar
    • Export Citation
  • Wanner, H., and Coauthors, 2008: Mid- to Late Holocene climate change: An overview. Quat. Sci. Rev., 27, 17911828, https://doi.org/10.1016/j.quascirev.2008.06.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Widmann, M., H. Goosse, G. van der Schrier, R. Schnur, and J. Barkmeijer, 2010: Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium. Climate Past, 6, 627644, https://doi.org/10.5194/cp-6-627-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., 2011: Do climate models underestimate the sensitivity of Northern Hemisphere sea ice cover? J. Climate, 24, 39243934, https://doi.org/10.1175/2011JCLI4146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolff, E. W., A. M. Rankin, and R. Röthlisberger, 2003: An ice core indicator of Antarctic sea ice production? Geophys. Res. Lett., 30, 25, https://doi.org/10.1029/2003GL018454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., O. Bothe, C. Timmreck, J. Bader, A. Beitsch, H.-F. Graf, D. Notz, and J. H. Jungclaus, 2014: Inter-hemispheric asymmetry in the sea-ice response to volcanic forcing simulated by MPI-ESM (COSMOS-Mill). Earth Syst. Dyn., 5, 223242, https://doi.org/10.5194/esd-5-223-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1941 289 0
Full Text Views 1765 1447 121
PDF Downloads 1163 801 118