Energy Transfers between Multidecadal and Turbulent Variability

Antoine Hochet aUniversité Brest, CNRS, Ifremer, IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS, UMR 6523), IUEM, Brest, France

Search for other papers by Antoine Hochet in
Current site
Google Scholar
PubMed
Close
,
Thierry Huck aUniversité Brest, CNRS, Ifremer, IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS, UMR 6523), IUEM, Brest, France

Search for other papers by Thierry Huck in
Current site
Google Scholar
PubMed
Close
,
Olivier Arzel aUniversité Brest, CNRS, Ifremer, IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS, UMR 6523), IUEM, Brest, France

Search for other papers by Olivier Arzel in
Current site
Google Scholar
PubMed
Close
,
Florian Sévellec aUniversité Brest, CNRS, Ifremer, IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS, UMR 6523), IUEM, Brest, France

Search for other papers by Florian Sévellec in
Current site
Google Scholar
PubMed
Close
, and
Alain Colin de Verdière aUniversité Brest, CNRS, Ifremer, IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS, UMR 6523), IUEM, Brest, France

Search for other papers by Alain Colin de Verdière in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

One of the proposed mechanisms to explain the multidecadal variability observed in sea surface temperature of the North Atlantic Ocean consists of a large-scale low-frequency internal mode spontaneously developing because of the large-scale baroclinic instability of the time-mean circulation. Even though this mode has been extensively studied in terms of the buoyancy variance budget, its energetic properties remain poorly known. Here we perform the full mechanical energy budget including available potential energy (APE) and kinetic energy (KE) of this internal mode and decompose the budget into three frequency bands: mean, low frequency (LF) associated with the large-scale mode, and high frequency (HF) associated with mesoscale eddy turbulence. This decomposition allows us to diagnose the energy fluxes between the different reservoirs and to understand the sources and sinks. Because of the large scale of the mode, most of its energy is contained in the APE. In our configuration, the only source of LF APE is the transfer from mean APE to LF APE that is attributed to the large-scale baroclinic instability. In return the sinks of LF APE are the parameterized diffusion, the flux toward HF APE, and, to a much lesser extent, the flux toward LF KE. The presence of an additional wind stress component weakens multidecadal oscillations and modifies the energy fluxes between the different energy reservoirs. The KE transfer appears to only have a minor influence on the multidecadal mode relative to the other energy sources involving APE, in all experiments. These results highlight the utility of the full APE–KE budget.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Antoine Hochet, antoine.hochet@univ-brest.fr

Abstract

One of the proposed mechanisms to explain the multidecadal variability observed in sea surface temperature of the North Atlantic Ocean consists of a large-scale low-frequency internal mode spontaneously developing because of the large-scale baroclinic instability of the time-mean circulation. Even though this mode has been extensively studied in terms of the buoyancy variance budget, its energetic properties remain poorly known. Here we perform the full mechanical energy budget including available potential energy (APE) and kinetic energy (KE) of this internal mode and decompose the budget into three frequency bands: mean, low frequency (LF) associated with the large-scale mode, and high frequency (HF) associated with mesoscale eddy turbulence. This decomposition allows us to diagnose the energy fluxes between the different reservoirs and to understand the sources and sinks. Because of the large scale of the mode, most of its energy is contained in the APE. In our configuration, the only source of LF APE is the transfer from mean APE to LF APE that is attributed to the large-scale baroclinic instability. In return the sinks of LF APE are the parameterized diffusion, the flux toward HF APE, and, to a much lesser extent, the flux toward LF KE. The presence of an additional wind stress component weakens multidecadal oscillations and modifies the energy fluxes between the different energy reservoirs. The KE transfer appears to only have a minor influence on the multidecadal mode relative to the other energy sources involving APE, in all experiments. These results highlight the utility of the full APE–KE budget.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Antoine Hochet, antoine.hochet@univ-brest.fr
Save
  • Arbic, B. K., M. Müller, J. G. Richman, J. F. Shriver, A. J. Morten, R. B. Scott, G. Sérazin, and T. Penduff, 2014: Geostrophic turbulence in the frequency–wavenumber domain: Eddy-driven low-frequency variability. J. Phys. Oceanogr., 44, 20502069, https://doi.org/10.1175/JPO-D-13-054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arzel, O., and T. Huck, 2020: Contributions of atmospheric stochastic forcing and intrinsic ocean modes to North Atlantic Ocean interdecadal variability. J. Climate, 33, 23512370, https://doi.org/10.1175/JCLI-D-19-0522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arzel, O., A. Colin de Verdière, and T. Huck, 2007: On the origin of interdecadal oscillations in a coupled ocean atmosphere model. Tellus, 59A, 367383, https://doi.org/10.1111/j.1600-0870.2007.00227.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arzel, O., T. Huck, and A. Colin de Verdière, 2018: The internal generation of the Atlantic Ocean interdecadal variability. J. Climate, 31, 64116432, https://doi.org/10.1175/JCLI-D-17-0884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berloff, P. S., and J. C. McWilliams, 1999: Large-scale, low-frequency variability in wind-driven ocean gyres. J. Phys. Oceanogr., 29, 19251949, https://doi.org/10.1175/1520-0485(1999)029<1925:LSLFVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, https://doi.org/10.1038/nature10946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., D. Ferreira, J.-M. Campin, J. Marshall, and R. Tulloch, 2012: On the relationship between decadal buoyancy anomalies and variability of the Atlantic meridional overturning circulation. J. Climate, 25, 80098030, https://doi.org/10.1175/JCLI-D-11-00505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A., K. Bellomo, L. N. Murphy, M. A. Cane, T. Mauritsen, G. Rädel, and B. Stevens, 2015: The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science, 350, 320324, https://doi.org/10.1126/science.aab3980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A., M. A. Cane, L. N. Murphy, K. Bellomo, T. Mauritsen, and B. Stevens, 2016: Response to Comment on “The Atlantic Multidecadal Oscillation without a role for ocean circulation.” Science, 352, 1527, https://doi.org/10.1126/science.aaf2575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., and T. Huck, 1999: Baroclinic instability: An oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr., 29, 893910, https://doi.org/10.1175/1520-0485(1999)029<0893:BIAOWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., H. A. Dijkstra, and A. von der Heydt, 2008: Sub-surface signatures of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 35, L19602, https://doi.org/10.1029/2008GL034989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., H. A. Dijkstra, and A. von der Heydt, 2009: Noise-induced multidecadal variability in the North Atlantic: Excitation of normal modes. J. Phys. Oceanogr., 39, 220233, https://doi.org/10.1175/2008JPO3951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, https://doi.org/10.3402/tellusa.v29i4.11362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gastineau, G., J. Mignot, O. Arzel, and T. Huck, 2018: North Atlantic Ocean internal decadal variability: Role of the mean state and ocean–atmosphere coupling. J. Geophys. Res. Oceans, 123, 59495970, https://doi.org/10.1029/2018JC014074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., R. D. Slater, P. S. Swathi, and G. K. Vallis, 2005: The energetics of ocean heat transport. J. Climate, 18, 26042616, https://doi.org/10.1175/JCLI3436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and S. Zhang, 1995: An interdecadal oscillation in an idealized ocean basin forced by constant heat flux. J. Climate, 8, 8191, https://doi.org/10.1175/1520-0442(1995)008<0081:AIOIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grégorio, S., T. Penduff, G. Sérazin, J.-M. Molines, B. Barnier, and J. Hirschi, 2015: Intrinsic variability of the Atlantic meridional overturning circulation at interannual-to-multidecadal time scales. J. Phys. Oceanogr., 45, 19291946, https://doi.org/10.1175/JPO-D-14-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and R. Tailleux, 2011: Kinetic energy analysis of the response of the Atlantic meridional overturning circulation to CO2-forced climate change. Climate Dyn., 37, 893914, https://doi.org/10.1007/s00382-010-0847-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., M. Latif, N. Keenlyside, W. Park, and K. P. Koltermann, 2013: North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature, 499, 464467, https://doi.org/10.1038/nature12268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models Part I. Theory. Tellus, 28, 473485, https://doi.org/10.3402/tellusa.v28i6.11316.

  • Hochet, A., T. Huck, O. Arzel, F. Sévellec, A. Colin de Verdière, M. Mazloff, and B. Cornuelle, 2020: Direct temporal cascade of temperature variance in eddy-permitting simulations of multidecadal variability. J. Climate, 33, 94099425, https://doi.org/10.1175/JCLI-D-19-0921.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., P. Spence, O. A. Saenko, and S. M. Downes, 2017: The energetics of Southern Ocean upwelling. J. Phys. Oceanogr., 47, 135153, https://doi.org/10.1175/JPO-D-16-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and R. L. Chou, 1994: Parameter sensitivity study of the saline circulation. Climate Dyn., 9, 391409, https://doi.org/10.1007/BF00207934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huck, T., and G. K. Vallis, 2001: Linear stability analysis of the three-dimensional thermally-driven ocean circulation: Application to interdecadal oscillations. Tellus, 53A, 526545, https://doi.org/10.3402/tellusa.v53i4.12225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huck, T., A. Colin de Verdière, and A. J. Weaver, 1999: Interdecadal variability of the thermohaline circulation in box-ocean models forced by fixed surface fluxes. J. Phys. Oceanogr., 29, 865892, https://doi.org/10.1175/1520-0485(1999)029<0865:IVOTTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huck, T., G. K. Vallis, and A. Colin de Verdière, 2001: On the robustness of the interdecadal modes of the thermohaline circulation. J. Climate, 14, 940963, https://doi.org/10.1175/1520-0442(2001)014<0940:OTROTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huck, T., O. Arzel, and F. Sévellec, 2015: Multidecadal variability of the overturning circulation in presence of eddy turbulence. J. Phys. Oceanogr., 45, 157173, https://doi.org/10.1175/JPO-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, G. O., A. M. C. Hogg, and R. W. Griffiths, 2009: Available potential energy and irreversible mixing in the meridional overturning circulation. J. Phys. Oceanogr., 39, 31303146, https://doi.org/10.1175/2009JPO4162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jamet, Q., T. Huck, O. Arzel, J.-M. Campin, and A. Colin de Verdière, 2016: Oceanic control of multidecadal variability in an idealized coupled GCM. Climate Dyn., 46, 30793095, https://doi.org/10.1007/s00382-015-2754-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jamet, Q., W. Dewar, N. Wienders, and B. Deremble, 2019: Spatiotemporal patterns of chaos in the Atlantic overturning circulation. Geophys. Res. Lett., 46, 75097517, https://doi.org/10.1029/2019GL082552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, https://doi.org/10.1126/science.288.5473.1984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., and T. J. McDougall, 2010: Influence of the nonlinear equation of state on global estimates of dianeutral advection and diffusion. J. Phys. Oceanogr., 40, 16901709, https://doi.org/10.1175/2010JPO4303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157, https://doi.org/10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, S., T. Penduff, L. Bessières, J.-M. Molines, J.-M. Brankart, G. Sérazin, B. Barnier, and L. Terray, 2018: Intrinsic and atmospherically forced variability of the AMOC: Insights from a large-ensemble ocean hindcast. J. Climate, 31, 11831203, https://doi.org/10.1175/JCLI-D-17-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, P. E., B. K. Arbic, A. McC. Hogg, A. E. Kiss, J. R. Munroe, and J. R. Blundell, 2020: Frequency-domain analysis of the energy budget in an idealized coupled ocean–atmosphere model. J. Climate, 33, 707726, https://doi.org/10.1175/JCLI-D-19-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muir, L. C., and A. V. Fedorov, 2017: Evidence of the AMOC interdecadal mode related to westward propagation of temperature anomalies in CMIP5 models. Climate Dyn., 48, 15171535, https://doi.org/10.1007/s00382-016-3157-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502, https://doi.org/10.1175/2010JPO4529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, https://doi.org/10.1175/JPO-D-11-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nycander, J., M. Hieronymus, and F. Roquet, 2015: The nonlinear equation of state of sea water and the global water mass distribution. Geophys. Res. Lett., 42, 77147721, https://doi.org/10.1002/2015GL065525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, P., J. Mignot, D. Swingedouw, F. Sévellec, and E. Guilyardi, 2015: Reconciling two alternative mechanisms behind bi-decadal variability in the North Atlantic. Prog. Oceanogr., 137, 237249, https://doi.org/10.1016/j.pocean.2015.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penduff, T., M. Juza, B. Barnier, J. Zika, W. K. Dewar, A.-M. Treguier, J.-M. Molines, and N. Audiffren, 2011: Sea level expression of intrinsic and forced ocean variabilities at interannual time scales. J. Climate, 24, 56525670, https://doi.org/10.1175/JCLI-D-11-00077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reguero, B. G., I. J. Losada, and F. J. Méndez, 2019: A recent increase in global wave power as a consequence of oceanic warming. Nat. Commun., 10, 205, https://doi.org/10.1038/s41467-018-08066-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saenz, J. A., R. Tailleux, E. D. Butler, G. O. Hughes, and K. I. Oliver, 2015: Estimating Lorenz’s reference state in an ocean with a nonlinear equation of state for seawater. J. Phys. Oceanogr., 45, 12421257, https://doi.org/10.1175/JPO-D-14-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, https://doi.org/10.1038/367723a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotti, A., and B. White, 2014: Diagnosing mixing in stratified turbulent flows with a locally defined available potential energy. J. Fluid Mech., 740, 114135, https://doi.org/10.1017/jfm.2013.643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sérazin, G., T. Penduff, S. Grégorio, B. Barnier, J.-M. Molines, and L. Terray, 2015: Intrinsic variability of sea level from global ocean simulations: Spatiotemporal scales. J. Climate, 28, 42794292, https://doi.org/10.1175/JCLI-D-14-00554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sérazin, G., T. Penduff, B. Barnier, J.-M. Molines, B. K. Arbic, M. Müller, and L. Terray, 2018: Inverse cascades of kinetic energy as a source of intrinsic variability: A global OGCM study. J. Phys. Oceanogr., 48, 13851408, https://doi.org/10.1175/JPO-D-17-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and A. V. Fedorov, 2013: The leading, interdecadal eigenmode of the Atlantic meridional overturning circulation in a realistic ocean model. J. Climate, 26, 21602183, https://doi.org/10.1175/JCLI-D-11-00023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., A. C. N. Garabato, and T. Huck, 2020: Damping of climate-scale oceanic variability by mesoscale eddy turbulence. J. Phys. Oceanogr., 51, 491503, https://doi.org/10.1175/JPO-D-20-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohail, T., B. Gayen, and A. M. Hogg, 2018: Convection enhances mixing in the Southern Ocean. Geophys. Res. Lett., 45, 41984207, https://doi.org/10.1029/2018GL077711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2008: Low-frequency interaction between horizontal and overturning gyres in the ocean. Geophys. Res. Lett., 35, L18614, https://doi.org/10.1029/2008GL035206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 17431769, https://doi.org/10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., G. D. McCarthy, J. Robson, B. Sinha, A. T. Archibald, and L. J. Gray, 2018: Atlantic multidecadal variability and the UK ACSIS program. Bull. Amer. Meteor. Soc., 99, 415425, https://doi.org/10.1175/BAMS-D-16-0266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2009: On the energetics of stratified turbulent mixing, irreversible thermodynamics, Boussinesq models and the ocean heat engine controversy. J. Fluid Mech., 638, 339382, https://doi.org/10.1017/S002211200999111X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • te Raa, L. A., and H. A. Dijkstra, 2002: Instability of the thermohaline ocean circulation on interdecadal timescales. J. Phys. Oceanogr., 32, 138160, https://doi.org/10.1175/1520-0485(2002)032<0138:IOTTOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1998: On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28, 18321852, https://doi.org/10.1175/1520-0485(1998)028<1832:OTOSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. 2nd ed. Cambridge University Press, 946.

  • von Storch, H., and F. W. Zwiers, 2001: Statistical Analysis in Climate Research. Cambridge University Press, paperback (corrected) ed., 484 pp.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. N. Lombard, J. J. Riley, and E. A. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289, 115128, https://doi.org/10.1017/S002211209500125X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., 1997: The damping effect of bottom topography on internal decadal-scale oscillations of the thermohaline circulation. J. Phys. Oceanogr., 27, 203208, https://doi.org/10.1175/1520-0485(1997)027<0203:TDEOBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemskova, V. E., B. L. White, and A. Scotti, 2015: Available potential energy and the general circulation: Partitioning wind, buoyancy forcing, and diapycnal mixing. J. Phys. Oceanogr., 45, 15101531, https://doi.org/10.1175/JPO-D-14-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemskova, V. E., B. L. White, and A. Scotti, 2021: Energetics of a rotating wind-forced horizontal convection model of a reentrant channel. J. Phys. Oceanogr., 51, 22712290, https://doi.org/10.1175/JPO-D-19-0169.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Sutton, G. Danabasoglu, T. L. Delworth, W. M. Kim, J. Robson, and S. G. Yeager, 2016: Comment on “The Atlantic Multidecadal Oscillation without a role for ocean circulation.” Science, 352, 1527, https://doi.org/10.1126/science.aaf1660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Sutton, G. Danabasoglu, Y.-O. Kwon, R. Marsh, S. G. Yeager, D. E. Amrhein, and C. M. Little, 2019: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys., 57, 316375, https://doi.org/10.1029/2019RG000644.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 468 0 0
Full Text Views 421 193 58
PDF Downloads 329 89 5