• Ballinger, T. J., J. W. Overland, M. Wang, U. S. Bhatt, E. Hanna, I. Hanssen-Bauer, S.-J. Kim, R. L. Thoman, and J. E. Walsh, 2020: Surface air temperature. Arctic Report Card: Update for 2020, 7 pp., https://doi.org/10.25923/gcw8-2z06.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. M. Polvani, 2015: CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J. Climate, 28, 52545271, https://doi.org/10.1175/JCLI-D-14-00589.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baxter, I., and Coauthors, 2019: How tropical Pacific surface cooling contributed to accelerated sea ice melt from 2007 to 2012 as ice is thinned by anthropogenic forcing. J. Climate, 32, 85838602, https://doi.org/10.1175/JCLI-D-18-0783.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, H., J. Zhang, Y. Wang, Z. Zhang, Y. Zhang, M. Fu, H. Huang, and X. Xu, 2018: Arctic sea ice volume changes in terms of age as revealed from satellite observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 11, 22232237, https://doi.org/10.1109/JSTARS.2018.2823735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, H., Y. Wang, Y. Liang, W. Sun, X. Liang, Q. Yu, Z. Zhang, and X. Xu, 2021: Influences of summertime Arctic dipole atmospheric circulation on sea ice concentration variations in the Pacific sector of the Arctic during different Pacific decadal oscillation phases. J. Climate, 34, 30033019, https://doi.org/10.1175/JCLI-D-19-0843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushuk, M., M. Winton, D. B. Bonan, E. Blanchard-Wrigglesworth, and T. Delworth, 2020: A mechanism for the Arctic sea ice spring predictability barrier. Geophys. Res. Lett., 47, e2020GL088335, https://doi.org/10.1029/2020GL088335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro-Morales, K., F. Kauker, M. Losch, S. Hendricks, K. Riemann-Campe, and R. Gerdes, 2014: Sensitivity of simulated Arctic sea ice to realistic ice thickness distributions and snow parameterizations. J. Geophys. Res. Oceans, 119, 559571, https://doi.org/10.1002/2013JC009342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2017: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., and D. K. Hall, 2014: Climate trends in the Arctic as observed from space. Wiley Interdiscip. Rev.: Climate Change, 5, 389409, https://doi.org/10.1002/wcc.277.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., J. L. Schramm, and E. E. Ebert, 1995: Sea ice-albedo climate feedback mechanism. J. Climate, 8, 240247, https://doi.org/10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and Coauthors, 2017: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Climate Change, 7, 289295, https://doi.org/10.1038/nclimate3241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel, 2017: Sea ice index, version 3. National Snow and Ice Data Center, accessed 15 December 2020, https://doi.org/10.7265/N5K072F8.

    • Search Google Scholar
    • Export Citation
  • Flocco, D., D. Schroeder, D. L. Feltham, and E. C. Hunke, 2012: Impact of melt ponds on Arctic sea ice simulation from 1990 to 2007. J. Geophys. Res., 117, C09032, https://doi.org/10.1029/2012JC008195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, https://doi.org/10.1088/1748-9326/10/1/014005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., and Coauthors, 2015: Arctic sea ice and Eurasian climate: A review. Adv. Atmos. Sci., 32, 92114, https://doi.org/10.1007/s00376-014-0009-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., T. Mauritsen, S. Drijfhout, M. Tjernstrom, and S. Martensson, 2011: Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007. Climate Dyn., 36, 21032112, https://doi.org/10.1007/s00382-010-0809-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harada, Y., and Coauthors, 2016: The JRA-55 reanalysis: Representation of atmospheric circulation and climate variability. J. Meteor. Soc. Japan, 94, 269302, https://doi.org/10.2151/jmsj.2016-015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, S., S. Paul, and E. Rinne, 2018a: ESA Sea Ice Climate Change Initiative (Sea_Ice_cci): Northern Hemisphere sea ice thickness from the CryoSat-2 satellite on a monthly grid (L3C), v2.0. Centre for Environmental Data Analysis, accessed 5 September 2019, https://doi.org/10.5285/ff79d140824f42dd92b204b4f1e9e7c2.

    • Search Google Scholar
    • Export Citation
  • Hendricks, S., S. Paul, and E. Rinne, 2018b: ESA Sea Ice Climate Change Initiative (Sea_Ice_cci): Northern Hemisphere sea ice thickness from the Envisat satellite on a monthly grid (L3C), v2.0. Centre for Environmental Data Analysis, accessed 5 September 2019, https://doi.org/10.5285/f4c34f4f0f1d4d0da06d771f6972f180.

    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., III, 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815846, https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., III, 1980: Modeling a variable thickness sea ice cover. Mon. Wea. Rev., 108, 19431973, https://doi.org/10.1175/1520-0493(1980)108<1943:MAVTSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibler, W. D., III, 1984: The role of sea ice dynamics in modelling CO2 increases. Climate Processes and Climate Sensitivity, J. E. Hansen and T. Takahashi, Eds., Amer. Geophys. Union, 238253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hovelsrud, G., M. McKenna, and H. Huntington, 2008: Marine mammal harvests and other interactions with humans. Ecol. Appl., 18, 135147, https://doi.org/10.1890/06-0843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, J. M., E. C. Carmack, F. A. McLaughlin, S. E. Allen, and R. G. Ingram, 2010: Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993–2008. J. Geophys. Res., 115, C05021, https://doi.org/10.1029/2009JC005265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, https://doi.org/10.1029/2008GL033451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keen, A., and Coauthors, 2021: An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models. Cryosphere, 15, 951982, https://doi.org/10.5194/tc-15-951-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2007: Near zero replenishment of the Arctic multiyear sea ice cover at the end of 2005 summer. Geophys. Res. Lett., 34, L05501, https://doi.org/10.1029/2006GL028737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2018: Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett., 13, 105005, https://doi.org/10.1088/1748-9326/aae3ec.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., and D. A. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett., 36, L15501, https://doi.org/10.1029/2009GL039035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, A., S. Yang, and E. Kaas, 2017: Sea ice thickness and recent Arctic warming. Geophys. Res. Lett., 44, 409418, https://doi.org/10.1002/2016GL071274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H. J., M. O. Kwon, S.-W. Yeh, Y.-O. Kwon, W. Park, J.-H. Park, Y. H. Kim, and M. A. Alexander, 2017: Impact of poleward moisture transport from the North Pacific on the acceleration of sea ice loss in the Arctic since 2002. J. Climate, 30, 67576769, https://doi.org/10.1175/JCLI-D-16-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., A. Kumar, G. D. Bell, M. S. Halpert, and R. W. Higgins, 2008: Role of the Pacific–North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys. Res. Lett., 35, L20701, https://doi.org/10.1029/2008GL035205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., and M. Losch, 2018: On the effects of increased vertical mixing on the Arctic Ocean and sea ice. J. Geophys. Res. Oceans, 123, 92669282, https://doi.org/10.1029/2018JC014303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., M. Losch, L. Nerger, L. Mu, Q. Yang, and C. Liu, 2019: Using sea surface temperature observations to constrain upper ocean properties in an Arctic sea ice-ocean data assimilation system. J. Geophys. Res. Oceans, 124, 47274743, https://doi.org/10.1029/2019JC015073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., and J. Zhang, 2005: The thinning of Arctic sea ice, 1988–2003: Have we passed a tipping point? J. Climate, 18, 48794894, https://doi.org/10.1175/JCLI3587.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere, 9, 269283, https://doi.org/10.5194/tc-9-269-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., J. Zhang, A. Schweiger, M. Steele, and H. Stern, 2009: Arctic sea ice retreat in 2007 follows thinning trend. J. Climate, 22, 165176, https://doi.org/10.1175/2008JCLI2521.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, 182 pp.

    • Search Google Scholar
    • Export Citation
  • Losch, M., D. Menemenlis, J. M. Campin, P. Heimbach, and C. Hill, 2010: On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Modell., 33, 129144, https://doi.org/10.1016/j.ocemod.2009.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukovich, J. V., J. C. Stroeve, A. Crawford, L. Hamilton, M. Tsamados, H. Heorton, and F. Massonnet, 2021: Summer extreme cyclone impacts on Arctic sea ice. J. Climate, 34, 48174834, https://doi.org/10.1175/JCLI-D-19-0925.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslanik, J., J. Stroeve, C. Fowler, and W. Emery, 2011: Distribution and trends in Arctic sea ice age through spring 2011. Geophys. Res. Lett., 38, L13502, https://doi.org/10.1029/2011GL047735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, W. N., F. Fetterer, M. Savoie, S. Mallory, R. Duerr, and J. Stroeve, 2013: NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, version 2. National Snow and Ice Data Center, accessed 26 May 2018, https://doi.org/10.7265/N55M63M1.

    • Search Google Scholar
    • Export Citation
  • Meier, W. N., and Coauthors, 2014: Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys., 51, 185217, https://doi.org/10.1002/2013RG000431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., J. M. Campin, P. Heimbach, C. Hill, T. Lee, A. Nguyen, M. Schodlok, and H. Zhang, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, 1321.

    • Search Google Scholar
    • Export Citation
  • Notz, D., and C. M. Bitz, 2017: Sea ice in Earth system model. Sea Ice, D. N. Thomas, Ed., John Wiley & Sons, 304329, https://doi.org/10.1002/9781118778371.ch12.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., and J. M. Wallace, 2012: The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011. Geophys. Res. Lett., 39, L09704, https://doi.org/10.1029/2012GL051330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olonscheck, D., T. Mauritsen, and D. Notz, 2019: Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nat. Geosci., 12, 430434, https://doi.org/10.1038/s41561-019-0363-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., J. A. Francis, E. Hanna, and M. Wang, 2012: The recent shift in early summer Arctic atmospheric circulation. Geophys. Res. Lett., 39, L19804, https://doi.org/10.1029/2012GL053268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedersen, L. T., and Coauthors, 2017: ESA Sea Ice Climate Change Initiative (Sea_Ice_cci): Sea Ice Concentration Climate Data Record from the AMSR-E and AMSR-2 instruments at 25km grid spacing, version 2.1. Centre for Environmental Data Analysis, accessed 6 February 2018, https://doi.org/10.5285/f17f146a31b14dfd960cde0874236ee5.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., J. A. Richter-Menge, K. F. Jones, and B. Light, 2008: Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35, L11501, https://doi.org/10.1029/2008GL034007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., K. F. Jones, B. Light, H. Eicken, T. Markus, J. Stroeve, and R. Lindsay, 2011: Solar partitioning in a changing Arctic sea-ice cover. Ann. Glaciol., 52, 7, https://doi.org/10.3189/172756411795931543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. O., 2011: Megatrends, TemaNord 2011:527, Nordic Council of Ministers, 27 pp., https://doi.org/10.6027/TN2011-527.

  • Ricker, R., S. Hendricks, V. Helm, H. Skourup, and M. Davidson, 2014: Sensitivity of CryoSat-2 Arctic sea ice freeboard and thickness on radar-waveform interpretation. Cryosphere, 8, 16071622, https://doi.org/10.5194/tc-8-1607-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., and J. M. Wallace, 2004: Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophys. Res. Lett., 31, L09401, https://doi.org/10.1029/2004GL019492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulkes, R. M. S. M., 1995: A note on the evolution equations for the area fraction and the thickness of a floating ice cover. J. Geophys. Res., 100, 50215024, https://doi.org/10.1029/94JC03375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, C. Deser, and R. Tomas, 2013: The atmospheric response to three decades of observed Arctic sea ice loss. J. Climate, 26, 12301248, https://doi.org/10.1175/JCLI-D-12-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semtner, A. J., Jr., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379389, https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification. Global Planet. Change, 77, 8596, https://doi.org/10.1016/j.gloplacha.2011.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and Coauthors, 2003: A record minimum Arctic sea ice extent and area in 2002. Geophys. Res. Lett., 30, 1110, https://doi.org/10.1029/2002GL016406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, K., T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. McLaughlin, S. Zimmermann, and A. Proshutinsky, 2006: Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett., 33, L08605, https://doi.org/10.1029/2005GL025624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and I. Rudeva, 2012: The great Arctic cyclone of August 2012. Geophys. Res. Lett., 39, L23709, https://doi.org/10.1029/2012GL054259.

  • Spreen, G., L. Kaleschke, and G. Heygster, 2008: Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res., 113, C02S03, https://doi.org/10.1029/2005JC003384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steele, M., J. Morison, W. Ermold, I. Rigor, M. Ortmeyer, and K. Shimada, 2004: Circulation of summer Pacific halocline water in the Arctic Ocean. J. Geophys. Res., 109, C02027, https://doi.org/10.1029/2003JC002009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, https://doi.org/10.1007/s10584-011-0101-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., J. C. Fyfe, E. Hawkins, J. E. Kay, and A. Jahn, 2015: Influence of internal variability on Arctic sea-ice trends. Nat. Climate Change, 5, 8689, https://doi.org/10.1038/nclimate2483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tietsche, S., D. Notz, J. H. Jungclaus, and J. Marotzke, 2011: Recovery mechanisms of Arctic summer sea ice. Geophys. Res. Lett., 38, L02707, https://doi.org/10.1029/2010GL045698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Zhang, E. Watanabe, M. Ikeda, K. Mizobata, J. E. Walsh, X. Bai, and B. Wu, 2009: Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys. Res. Lett., 36, L05706, https://doi.org/10.1029/2008GL036706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., J. Walsh, S. Szymborski, and M. Peng, 2020: Rapid Arctic sea ice loss on the synoptic time scale and related atmospheric circulation anomalies. J. Climate, 33, 15971617, https://doi.org/10.1175/JCLI-D-19-0528.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., 2011: Do climate models underestimate the sensitivity of Northern Hemisphere sea ice cover? J. Climate, 24, 39243934, https://doi.org/10.1175/2011JCLI4146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., T. Weingartner, and R. Lindsay, 2010: The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophys. Res. Lett., 37, L01602, https://doi.org/10.1029/2009GL041621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Wang, and J. E. Walsh, 2005: Dipole anomaly in the Arctic atmosphere and winter Arctic sea ice motion. J. Climate, 19, 15291536, https://doi.org/10.1360/04yd0174.

    • Search Google Scholar
    • Export Citation
  • Yamagami, A., M. Matsueda, and H. L. Tanaka, 2017: Extreme Arctic cyclone in August 2016. Atmos. Sci. Lett., 18, 307314, https://doi.org/10.1002/asl.757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and W. D. Hibler III, 1997: On an efficient numerical method for modeling sea ice dynamics. J. Geophys. Res., 102, 86918702, https://doi.org/10.1029/96JC03744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Lindsay, M. Steele, and A. Schweiger, 2008: What drove the dramatic retreat of Arctic sea ice during summer 2007? Geophys. Res. Lett., 35, L11505, https://doi.org/10.1029/2008GL034005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Lindsay, A. Schweiger, and M. Steele, 2013: The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophys. Res. Lett., 40, 720726, https://doi.org/10.1002/grl.50190.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 866 856 44
Full Text Views 207 206 3
PDF Downloads 249 247 5

A Comparison of Factors That Led to the Extreme Sea Ice Minima in the Twenty-First Century in the Arctic Ocean

Xi LiangaKey Laboratory of Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Ministry of Natural Resources, Beijing, China

Search for other papers by Xi Liang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6225-3746
,
Xichen LibInternational Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xichen Li in
Current site
Google Scholar
PubMed
Close
,
Haibo BicKey Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
dLaboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Haibo Bi in
Current site
Google Scholar
PubMed
Close
,
Martin LoscheAlfred-Wegener-Institut, Helmholtz Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany

Search for other papers by Martin Losch in
Current site
Google Scholar
PubMed
Close
,
Yongqi GaofNansen Environmental and Remote Sensing Center/Bjerknes Center for Climate Research, Bergen, Norway

Search for other papers by Yongqi Gao in
Current site
Google Scholar
PubMed
Close
,
Fu ZhaoaKey Laboratory of Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Ministry of Natural Resources, Beijing, China

Search for other papers by Fu Zhao in
Current site
Google Scholar
PubMed
Close
,
Zhongxiang TianaKey Laboratory of Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Ministry of Natural Resources, Beijing, China

Search for other papers by Zhongxiang Tian in
Current site
Google Scholar
PubMed
Close
, and
Chengyan LiugSouthern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China

Search for other papers by Chengyan Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The extreme Arctic sea ice minima in the twenty-first century have been attributed to multiple factors, such as anomalous atmospheric circulation, excess solar radiation absorbed by open ocean, and thinning sea ice in a warming world. Most likely it is the combination of these factors that drives the extreme sea ice minima, but how the factors rank in setting the conditions for these events has not been quantified. To address this question, the sea ice budget of an Arctic regional sea ice–ocean model forced by atmospheric reanalysis data is analyzed to assess the development of the observed sea ice minima. Results show that the ice area difference in the years 2012, 2019, and 2007 is driven to over 60% by the difference in summertime sea ice area loss due to air–ocean heat flux over open water. Other contributions are small. For the years 2012 and 2020 the situation is different and more complex. The air–ice heat flux causes more sea ice area loss in summer 2020 than in 2012 due to warmer air temperatures, but this difference in sea ice area loss is compensated by reduced advective sea ice loss out of the Arctic Ocean mainly caused by the relaxation of the Arctic dipole. The difference in open water area in early August leads to different air–ocean heat fluxes, which distinguishes the sea ice minima in 2012 and 2020. Further, sensitivity experiments indicate that both the atmospheric circulation associated with the Arctic dipole and extreme storms are essential conditions for a new low record of sea ice extent.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Author Y. Gao is deceased.

Corresponding author: Chengyan Liu, liuchengyan@sml-zhuhai.cn

Abstract

The extreme Arctic sea ice minima in the twenty-first century have been attributed to multiple factors, such as anomalous atmospheric circulation, excess solar radiation absorbed by open ocean, and thinning sea ice in a warming world. Most likely it is the combination of these factors that drives the extreme sea ice minima, but how the factors rank in setting the conditions for these events has not been quantified. To address this question, the sea ice budget of an Arctic regional sea ice–ocean model forced by atmospheric reanalysis data is analyzed to assess the development of the observed sea ice minima. Results show that the ice area difference in the years 2012, 2019, and 2007 is driven to over 60% by the difference in summertime sea ice area loss due to air–ocean heat flux over open water. Other contributions are small. For the years 2012 and 2020 the situation is different and more complex. The air–ice heat flux causes more sea ice area loss in summer 2020 than in 2012 due to warmer air temperatures, but this difference in sea ice area loss is compensated by reduced advective sea ice loss out of the Arctic Ocean mainly caused by the relaxation of the Arctic dipole. The difference in open water area in early August leads to different air–ocean heat fluxes, which distinguishes the sea ice minima in 2012 and 2020. Further, sensitivity experiments indicate that both the atmospheric circulation associated with the Arctic dipole and extreme storms are essential conditions for a new low record of sea ice extent.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Author Y. Gao is deceased.

Corresponding author: Chengyan Liu, liuchengyan@sml-zhuhai.cn
Save