• Abramowitz, M., and I. A. Stegun, 1964: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, 1046 pp.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, https://doi.org/10.1175/JAS-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., J. M. Wallace, and J. M. Monteiro, 2016: Seasonality of the structure and propagation characteristics of the MJO. J. Atmos. Sci., 73, 35113526, https://doi.org/10.1175/JAS-D-15-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmed, F., 2021: The MJO on the equatorial beta-plane: An eastward propagating Rossby wave induced by meridional moisture advection. J. Atmos. Sci., 78, 31153135, https://doi.org/10.1175/JAS-D-21-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahmed, F., J. D. Neelin, and Á. F. Adames, 2021: Quasi-equilibrium and weak temperature gradient balances in an equatorial beta-plane model. J. Atmos. Sci., 78, 209227, https://doi.org/10.1175/JAS-D-20-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2008: A toy model of the instability in the equatorially trapped convectively coupled waves on the equatorial beta plane. J. Atmos. Sci., 65, 37363757, https://doi.org/10.1175/2008JAS2776.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellon, G., and A. H. Sobel, 2008a: Poleward-propagating intraseasonal monsoon disturbances in an intermediate-complexity axisymmetric model. J. Atmos. Sci., 65, 470489, https://doi.org/10.1175/2007JAS2339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellon, G., and A. H. Sobel, 2008b: Instability of the axisymmetric monsoon flow and intraseasonal oscillation. J. Geophys. Res., 113, D07108, https://doi.org/10.1029/2007JD009291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drbohlav, H.-K. L., and B. Wang, 2005: Mechanism of the northward-propagating intraseasonal oscillation: Insights from a zonally symmetric model. J. Climate, 18, 952972, https://doi.org/10.1175/JCLI3306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340, https://doi.org/10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2020: Slow modes of the equatorial waveguide. J. Atmos. Sci., 77, 15751582, https://doi.org/10.1175/JAS-D-19-0281.1.

  • Fuchs, Ž., and D. J. Raymond, 2002: Large-scale modes of a nonrotating atmosphere with water vapor and cloud–radiation feedbacks. J. Atmos. Sci., 59, 16691679, https://doi.org/10.1175/1520-0469(2002)059<1669:LSMOAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2005: Large-scale modes in a rotating atmosphere with radiative-convective instability and WISHE. J. Atmos. Sci., 62, 40844094, https://doi.org/10.1175/JAS3582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2017: A simple model of intraseasonal oscillations. J. Adv. Model. Earth Syst., 9, 11951211, https://doi.org/10.1002/2017MS000963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., Á. F. Adames, M. Zhao, D. Waliser, and E. Maloney, 2018: A unified moisture mode framework for seasonality of the Madden–Julian oscillation. J. Climate, 31, 42154224, https://doi.org/10.1175/JCLI-D-17-0671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, J. H. Ruppert, and M. Katsumata, 2015: Sounding-based thermodynamic budgets for DYNAMO. J. Atmos. Sci., 72, 598622, https://doi.org/10.1175/JAS-D-14-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and K. Emanuel, 2018: Intraseasonal variability in a cloud-permitting near-global equatorial aquaplanet model. J. Atmos. Sci., 75, 43374355, https://doi.org/10.1175/JAS-D-18-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323, https://doi.org/10.1175/JAS3677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., 2021: The boreal summer intraseasonal oscillation (BSISO): A review. J. Meteor. Soc. Japan, 99, 933972, https://doi.org/10.2151/jmsj.2021-045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-E., and C. Zhang, 2021: Core dynamics of the MJO. J. Atmos. Sci., 78, 229248, https://doi.org/10.1175/JAS-D-20-0193.1.

  • Krishnamurti, T. N., and D. Subrahmanyam, 1982: The 30–50 day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 20882095, https://doi.org/10.1175/1520-0469(1982)039<2088:TDMAMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008: A moisture-stratiform instability for convectively coupled waves. J. Atmos. Sci., 65, 834854, https://doi.org/10.1175/2007JAS2444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 15931606, https://doi.org/10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., L. Wang, M. Peng, B. Wang, C. Zhang, W. Lau, and H.-C. Kuo, 2018: A paper on the tropical intraseasonal oscillation published in 1963 in a Chinese journal. Bull. Amer. Meteor. Soc., 99, 17651779, https://doi.org/10.1175/BAMS-D-17-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2016: Role of horizontal advection of seasonal-mean moisture in the Madden–Julian oscillation: A theoretical model analysis. J. Climate, 29, 62776293, https://doi.org/10.1175/JCLI-D-16-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2017: Roles of the moisture and wave feedbacks in shaping the Madden–Julian oscillation. J. Climate, 30, 10 27510 291, https://doi.org/10.1175/JCLI-D-17-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, https://doi.org/10.1073/pnas.0903367106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, https://doi.org/10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian Oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453, https://doi.org/10.1002/qj.224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nanjundiah, R. S., J. Srinivasan, and S. Gadgil, 1992: Intraseasonal variation of the Indian summer monsoon. J. Meteor. Soc. Japan, 70, 529550, https://doi.org/10.2151/jmsj1965.70.1B_529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and J.-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51, 18761894, https://doi.org/10.1175/1520-0469(1994)051<1876:MOTVUC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—Formulation. J. Atmos. Sci., 57, 17411766, https://doi.org/10.1175/1520-0469(2000)057<1741:AQETCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., 2017: Successive MJO propagation in MERRA-2 reanalysis. Geophys. Res. Lett., 44, 51785186, https://doi.org/10.1002/2017GL073399.

  • Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357379, https://doi.org/10.1175/1520-0469(1990)047<0357:DCADSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sentić, S., Ž. Fuchs-Stone, and D. J. Raymond, 2020: The Madden–Julian oscillation and mean easterly winds. J. Geophys. Res. Atmos., 125, e2019JD030869, https://doi.org/10.1029/2019JD030869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., D. Kim, A. F. Adames, and J. Sukhatme, 2018: WISHE-moisture mode in an aquaplanet simulation. J. Adv. Model. Earth Syst., 10, 23932407, https://doi.org/10.1029/2018MS001441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 18401853, https://doi.org/10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and D. Kim, 2012: The MJO–Kelvin wave transition. Geophys. Res. Lett., 39, 2012GL053380, https://doi.org/10.1029/2012GL053380.

  • Sobel, A. H., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, https://doi.org/10.1175/JAS-D-11-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, https://doi.org/10.1175/JAS-D-12-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and S. Hottovy, 2020: Asymptotic models for tropical intraseasonal oscillations and geostrophic balance. J. Climate, 33, 47154737, https://doi.org/10.1175/JCLI-D-19-0420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., 2009: The moisture mode in the quasi-equilibrium tropical circulation model. Part I: Analysis based on the weak temperature gradient approximation. J. Atmos. Sci., 66, 15071523, https://doi.org/10.1175/2008JAS2690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 30063030, https://doi.org/10.1175/2008JCLI2731.1.

  • Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β plane. J. Atmos. Sci., 47, 397413, https://doi.org/10.1175/1520-0469(1990)047<0397:DOTCMK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and G. S. Chen, 2017: A general theoretical framework for understanding essential dynamics of Madden–Julian oscillation. Climate Dyn., 49, 23092328, https://doi.org/10.1007/s00382-016-3448-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and T. Li, 2020: Effect of vertical moist static energy advection on MJO eastward propagation: Sensitivity to analysis domain. Climate Dyn., 54, 20292039, https://doi.org/10.1007/s00382-019-05101-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, E. Maloney, and B. Wang, 2017: Fundamental causes of propagating and nonpropagating MJOS in MJOTF/GASS models. J. Climate, 30, 37433769, https://doi.org/10.1175/JCLI-D-16-0765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, F. Zhang, Y. Q. Sun, Y. Yue, and L. Zhou, 2015: Regional simulation of the October and November MJO events observed during the CINDY/DYNAMO field campaign at gray zone resolution. J. Climate, 28, 20972119, https://doi.org/10.1175/JCLI-D-14-00294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, and J. Nie, 2016: Modeling the MJO in a cloud-resolving model with parameterized large-scale dynamics: Vertical structure, radiation, and horizontal advection of dry air. J. Adv. Model. Earth Syst., 8, 121139, https://doi.org/10.1002/2015MS000529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., D. Ma, A. H. Sobel, and M. K. Tippett, 2018: Propagation characteristics of BSISO indices. Geophys. Res. Lett., 45, 99349943, https://doi.org/10.1029/2018GL078321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, C.-Y. Lee, D. Ma, S. Chen, M. Curcic, and J. Pullen, 2021: Propagating mechanisms of the 2016 summer BSISO event: Air–sea coupling, vorticity, and moisture. J. Geophys. Res. Atmos., 126, e2020JD033284, https://doi.org/10.1029/2020JD033284.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1983: Mechanisms of low-frequency variability: Surface hydrological effects. J. Atmos. Sci., 40, 21102124, https://doi.org/10.1175/1520-0469(1983)040<2110:MOMLFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., 2003: A shallow CISK, deep equilibrium mechanism for the interaction between large-scale convection and large-scale circulations in the tropics. J. Atmos. Sci., 60, 377392, https://doi.org/10.1175/1520-0469(2003)060<0377:ASCDEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., E. S. Sarachik, and D. S. Battisti, 2001: Thermally driven tropical circulations under Rayleigh friction and Newtonian cooling: Analytic solutions. J. Atmos. Sci., 58, 724741, https://doi.org/10.1175/1520-0469(2001)058<0724:TDTCUR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Y.-B., S.-J. Chen, I.-L. Zhang, and Y.-L. Hung, 1963: A preliminarily statistic and synoptic study about the basic currents over southeastern Asia and the initiation of typhoon (in Chinese). Acta Meteor. Sin., 33, 206217.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and K. Emanuel, 1991: An improved model of the equatorial troposphere and its coupling with the stratosphere. J. Atmos. Sci., 48, 377389, https://doi.org/10.1175/1520-0469(1991)048<0377:AIMOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242, https://doi.org/10.2151/jmsj1965.57.3_227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003,https://doi.org/10.1029/2004RG000158.

  • Zhang, C., and J. Ling, 2012: Potential vorticity of the Madden–Julian oscillation. J. Atmos. Sci., 69, 6578, https://doi.org/10.1175/JAS-D-11-081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Á. F. Adames, B. Khouider, B. Wang, and D. Yang, 2020: Four theories of the Madden–Julian oscillation. Rev. Geophys., 58, e2019RG000685, https://doi.org/10.1029/2019RG000685.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1400 1197 75
Full Text Views 329 212 11
PDF Downloads 331 215 8

A Unified Moisture Mode Theory for the Madden–Julian Oscillation and the Boreal Summer Intraseasonal Oscillation

Shuguang WangaSchool of Atmospheric Sciences, Nanjing University, Nanjing, China
bKey Laboratory of Mesoscale Severe Weather/Ministry of Education, Nanjing University, Nanjing, China

Search for other papers by Shuguang Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1861-9285
and
Adam H. SobelcDepartment of Applied Physics and Applied Mathematics and Lamont-Doherty Earth Observatory, Columbia University, New York, New York

Search for other papers by Adam H. Sobel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Madden–Julian oscillation (MJO) and the boreal summer intraseasonal oscillation (BSISO) are fundamental modes of variability in the tropical atmosphere on the intraseasonal time scale. A linear model, using a moist shallow water equation set on an equatorial beta plane, is developed to provide a unified treatment of the two modes and to understand their growth and propagation over the Indian Ocean. Moisture is assumed to increase linearly with longitude and to decrease quadratically with latitude. Solutions are obtained through linear stability analysis, considering the gravest (n = 1) meridional mode with nonzero meridional velocity. Anomalies in zonal moisture advection and surface fluxes are both proportional to those in zonal wind, but of opposite sign. With observation-based estimates for both effects, the zonal advection dominates, and drives the planetary-scale instability. With a sufficiently small meridional moisture gradient, the horizontal structure exhibits oscillations with latitude and a northwest–southeast horizontal tilt in the Northern Hemisphere, qualitatively resembling the observed BSISO. As the meridional moisture gradient increases, the horizontal tilt decreases and the spatial pattern transforms toward the “swallowtail” structure associated with the MJO, with cyclonic gyres in both hemispheres straddling the equatorial precipitation maximum. These results suggest that the magnitude of the meridional moisture gradient shapes the horizontal structures, leading to the transformation from the BSISO-like tilted horizontal structure to the MJO-like neutral wave structure as the meridional moisture gradient changes with the seasons. The existence and behavior of these intraseasonal modes can be understood as a consequence of phase speed matching between the equatorial mode with zero meridional velocity (analogous to the dry Kelvin wave) and a local off-equatorial component that is characterized by considering an otherwise similar system on an f plane.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Years of the Maritime Continent Special Collection.

Corresponding author: S. Wang, wangsg@outlook.com

Abstract

The Madden–Julian oscillation (MJO) and the boreal summer intraseasonal oscillation (BSISO) are fundamental modes of variability in the tropical atmosphere on the intraseasonal time scale. A linear model, using a moist shallow water equation set on an equatorial beta plane, is developed to provide a unified treatment of the two modes and to understand their growth and propagation over the Indian Ocean. Moisture is assumed to increase linearly with longitude and to decrease quadratically with latitude. Solutions are obtained through linear stability analysis, considering the gravest (n = 1) meridional mode with nonzero meridional velocity. Anomalies in zonal moisture advection and surface fluxes are both proportional to those in zonal wind, but of opposite sign. With observation-based estimates for both effects, the zonal advection dominates, and drives the planetary-scale instability. With a sufficiently small meridional moisture gradient, the horizontal structure exhibits oscillations with latitude and a northwest–southeast horizontal tilt in the Northern Hemisphere, qualitatively resembling the observed BSISO. As the meridional moisture gradient increases, the horizontal tilt decreases and the spatial pattern transforms toward the “swallowtail” structure associated with the MJO, with cyclonic gyres in both hemispheres straddling the equatorial precipitation maximum. These results suggest that the magnitude of the meridional moisture gradient shapes the horizontal structures, leading to the transformation from the BSISO-like tilted horizontal structure to the MJO-like neutral wave structure as the meridional moisture gradient changes with the seasons. The existence and behavior of these intraseasonal modes can be understood as a consequence of phase speed matching between the equatorial mode with zero meridional velocity (analogous to the dry Kelvin wave) and a local off-equatorial component that is characterized by considering an otherwise similar system on an f plane.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Years of the Maritime Continent Special Collection.

Corresponding author: S. Wang, wangsg@outlook.com
Save