Modulation of Coupled Modes of Tibetan Plateau Heating and Indian Summer Monsoon on Summer Rainfall over Central Asia

Siwen Zhao aInstitute of Atmospheric Environment, China Meteorological Administration, Shenyang, China
bKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Siwen Zhao in
Current site
Google Scholar
PubMed
Close
,
Jie Zhang bKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jie Zhang in
Current site
Google Scholar
PubMed
Close
,
Yibo Du bKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yibo Du in
Current site
Google Scholar
PubMed
Close
,
Ruipeng Ji aInstitute of Atmospheric Environment, China Meteorological Administration, Shenyang, China

Search for other papers by Ruipeng Ji in
Current site
Google Scholar
PubMed
Close
, and
Miaomiao Niu bKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Miaomiao Niu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It has been suggested that summer rainfall over central Asia (CA) is significantly correlated with the summer thermal distribution of the Tibetan Plateau (TP) and the Indian summer monsoon (ISM). However, relatively few studies have investigated their synergistic effects of different distribution. This study documents the significant correlations between precipitation in CA and the diabatic heating of TP and the ISM in summer based on the results of statistical analysis and numerical simulation. Summer precipitation in CA is dominated by two water vapor transport branches from the south that are related to the two primary modes of anomalous diabatic heating distribution contributed by the TP and ISM precipitation, that is, the “+−” dipole mode in the southeastern TP and the Indian subcontinent (IS), and the “+−+” tripole mode in the southeastern TP, the IS, and southern India. Both modes exhibit obvious midlatitude Silk Road pattern (SRP) wave trains with cyclone anomalies over CA, but with different transient and stationary eddies over South Asia. The different locations of anomalous anticyclones over India govern two water vapor transport branches to CA, which are from the Arabian Sea and the Bay of Bengal. The water vapor flux climbs while being transported northward and can be transported to CA with the cooperation of cyclonic circulation. The convergent water vapor and ascending motion caused by cyclonic anomalies favor the precipitation in CA. Further analysis corroborates the negative south Indian Ocean dipole in February could affect the tripole mode distribution of TP heating and ISM via the atmospheric circulation, water vapor transport, and anomalous Hadley cell circulation. The results indicate a reliable prediction reference for summer precipitation in CA.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jie Zhang, gs-zhangjie@163.com

Abstract

It has been suggested that summer rainfall over central Asia (CA) is significantly correlated with the summer thermal distribution of the Tibetan Plateau (TP) and the Indian summer monsoon (ISM). However, relatively few studies have investigated their synergistic effects of different distribution. This study documents the significant correlations between precipitation in CA and the diabatic heating of TP and the ISM in summer based on the results of statistical analysis and numerical simulation. Summer precipitation in CA is dominated by two water vapor transport branches from the south that are related to the two primary modes of anomalous diabatic heating distribution contributed by the TP and ISM precipitation, that is, the “+−” dipole mode in the southeastern TP and the Indian subcontinent (IS), and the “+−+” tripole mode in the southeastern TP, the IS, and southern India. Both modes exhibit obvious midlatitude Silk Road pattern (SRP) wave trains with cyclone anomalies over CA, but with different transient and stationary eddies over South Asia. The different locations of anomalous anticyclones over India govern two water vapor transport branches to CA, which are from the Arabian Sea and the Bay of Bengal. The water vapor flux climbs while being transported northward and can be transported to CA with the cooperation of cyclonic circulation. The convergent water vapor and ascending motion caused by cyclonic anomalies favor the precipitation in CA. Further analysis corroborates the negative south Indian Ocean dipole in February could affect the tripole mode distribution of TP heating and ISM via the atmospheric circulation, water vapor transport, and anomalous Hadley cell circulation. The results indicate a reliable prediction reference for summer precipitation in CA.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jie Zhang, gs-zhangjie@163.com
Save
  • Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2012: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, https://doi.org/10.5194/essd-5-71-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bothe, O., K. Fraedrich, and X. Zhu, 2012: Precipitation climate of Central Asia and the large-scale atmospheric circulation. Theor. Appl. Climatol., 108, 345354, https://doi.org/10.1007/s00704-011-0537-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, J., P. Yao, L. Wang, and K. Liu, 2014: Summer rainfall variability in low-latitude highlands of China and subtropical Indian Ocean dipole. J. Climate, 27, 880892, https://doi.org/10.1175/JCLI-D-13-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., W. Li, H. Deng, G. Fang, and Z. Li, 2016: Changes in Central Asia’s water tower: Past, present and future. Sci. Rep., 6, 35458, https://doi.org/10.1038/srep35458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., and J. Zhang, 2020: The characteristics of late summer extreme precipitation in northern China and associated large-scale circulations. Int. J. Climatol., 40, 51705187, https://doi.org/10.1002/joc.6512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and C. W. Lan, 2012: Changes in the annual range of precipitation under global warming. J. Climate, 25, 222235, https://doi.org/10.1175/JCLI-D-11-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. C. H. Chiang, C. W. Lan, C. H. Chung, Y. C. Liao, and C. J. Lee, 2013: Increase in the range between wet and dry season precipitation. Nat. Geosci., 6, 263267, https://doi.org/10.1038/ngeo1744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dhame, S., A. S. Taschetto, A. Santoso, and K. J. Meissner, 2020: Indian Ocean warming modulates global atmospheric circulation trends. Climate Dyn., 55, 20532073, https://doi.org/10.1007/s00382-020-05369-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2007: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon. J. Climate, 20, 37513767, https://doi.org/10.1175/JCLI4221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H.-J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, https://doi.org/10.1038/nature13260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O’Gorman, and N. Maher, 2017: Addendum: More extreme precipitation in the world’s dry and wet regions. Nat. Climate Change, 7, 154158, https://doi.org/10.1038/nclimate3160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, W., and Coauthors, 2016: Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent. Nat. Commun., 7, 10 925, https://doi.org/10.1038/ncomms10925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., F. Li, M. Wang, and G. Wu, 2011: Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon. J. Climate, 24, 56715682, https://doi.org/10.1175/JCLI-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fumière, Q., M. Déqué, O. Nuissier, S. Somot, A. Alias, C. Caillaud, and Y. Seity, 2019: Extreme rainfall in Mediterranean France during the fall: Added value of the CNRM-AROME convection-permitting regional climate model. Climate Dyn., 55, 7791, https://doi.org/10.1007/s00382-019-04898-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., X. Sun, and X. Q. Yang, 2013: Impact of variability in the Indian summer monsoon on the East Asian summer monsoon. Atmos. Sci. Lett., 14, 1419, https://doi.org/10.1002/asl2.408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., J. Cao, L. I. Hui, J. Wang, and Y. Ding, 2016: Simulation of the interface between the ISM and the East Asian summer monsoon: Intercomparison between MPI-ESM and ECHAM5/MPI-OM. Adv. Atmos. Sci., 33, 294308, https://doi.org/10.1007/s00376-015-5073-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, T., S. He, H. Wang, and X. Hao, 2017: Enhanced influence of early-spring tropical Indian Ocean SST on the following early-summer precipitation over Northeast China. Climate Dyn., 51, 40654076, https://doi.org/10.1007/s00382-017-3669-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., Z. Wang, T. Zhou, and T. Li, 2019: Enhanced latent heating over the Tibetan Plateau as a key to the enhanced East Asian summer monsoon circulation under a warming climate. J. Climate, 32, 33733388, https://doi.org/10.1175/JCLI-D-18-0427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Huang, J., M. Ji, Y. Xie, S. Wang, Y. He, and J. Ran, 2016: Global semi-arid climate change over last 60 years. Climate Dyn., 46, 11311150, https://doi.org/10.1007/s00382-015-2636-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., H. Yu, A. Dai, Y. Wei, and L. Kang, 2017: Drylands face potential threat under 2°C global warming target. Nat. Climate Change, 7, 417422, https://doi.org/10.1038/nclimate3275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., F. H. Chen, S. Feng, J. Chen, and X. Zhang, 2013: Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation. Chin. Sci. Bull., 58, 39623968, https://doi.org/10.1007/s11434-013-5970-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., J. H. Chen, X. J. Zhang, S. Feng, and F. H. Chen, 2015: Definition of the core zone of the “westerlies-dominated climatic regime”, and its controlling factors during the instrumental period. Sci. China Earth Sci., 58, 676684, https://doi.org/10.1007/s11430-015-5057-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., M. M. Holland, P. R. Gent, S. Ghan, J. E. Kay, P. J. Kushner, and S. Marshall, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J., T. Zhou, X. Chen, and L. Zhang, 2020: Future changes in precipitation over central Asia based on CMIP6 projections. Environ. Res. Lett., 15, 054009, https://doi.org/10.1088/1748-9326/ab7d03.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and M. Ting, 2017: A dipole pattern of summertime rainfall across the Indian subcontinent and the Tibetan Plateau. J. Climate, 30, 96079620, https://doi.org/10.1175/JCLI-D-16-0914.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., Z. Wang, and Z. Li, 2018: Signature of the South China Sea summer monsoon onset on spring-to-summer transition of rainfall in the middle and lower reaches of the Yangtze River basin. Climate Dyn., 51, 37853796, https://doi.org/10.1007/s00382-018-4110-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., S. M. Daggupaty, J. Fein, M. Kanamitsu, and J. D. Lee, 1973: Tibetan high and upper tropospheric tropical circulations during northern summer. Bull. Amer. Meteor. Soc., 54, 12341250, https://doi.org/10.1175/1520-0477-54.12.1234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., and Z. Wu, 2012: Indian summer monsoon influence on the climate in the North Atlantic–European region. Climate Dyn., 39, 303311, https://doi.org/10.1007/s00382-011-1286-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lioubimtseva, E., and G. M. Henebry, 2009: Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ., 73, 963977, https://doi.org/10.1016/j.jaridenv.2009.04.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., X. Liu, and B. Dong, 2017: Intraseasonal variability of winter precipitation over Central Asia and the western Tibetan Plateau from 1979 to 2013 and its relationship with the North Atlantic Oscillation. Dyn. Atmos. Oceans, 79, 3142, https://doi.org/10.1016/j.dynatmoce.2017.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., Y. Chen, Z. Ye, Y. Li, and Q. Zhang, 2019: Recent lake area changes in Central Asia. Sci. Rep., 9, 16277, https://doi.org/10.1038/s41598-019-52396-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., and Coauthors, 2020: Near-global atmospheric responses to observed springtime Tibetan Plateau snow anomalies. J. Climate, 33, 16911706, https://doi.org/10.1175/JCLI-D-19-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., G. Wu, J. Hong, B. Dong, A. Duan, Q. Bao, and L. Zhou, 2012: Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Climate Dyn., 39, 11831195, https://doi.org/10.1007/s00382-012-1335-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Q., and Coauthors, 2021: How do multi-scale interactions affect extreme precipitation in eastern central Asia? J. Climate, 34, 74757491, https://doi.org/10.1175/JCLI-D-20-0763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makra, L., I. Matyasovszky, Z. Guba, K. Karatzas, and P. Anttila, 2011: Monitoring the long-range transport effects on urban PM10 levels using 3D clusters of backward trajectories. Atmos. Environ., 45, 26302641, https://doi.org/10.1016/j.atmosenv.2011.02.068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, D., T. Zhou, L. Zhang, and B. Wu, 2018: Human contribution to the increasing summer precipitation in Central Asia from 1961 to 2013. J. Climate, 31, 80058021, https://doi.org/10.1175/JCLI-D-17-0843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi:10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sha, Y., Z. Shi, X. Liu, Z. An, X. Li, and H. Chang, 2018: Role of the Tian Shan Mountains and Pamir Plateau in increasing spatiotemporal differentiation of precipitation over interior Asia. J. Climate, 31, 81418162, https://doi.org/10.1175/JCLI-D-17-0594.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorg, A., T. Bolch, M. Stoffel, O. Solomina, and M. Beniston, 2012: Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Climate Change, 2, 725731, https://doi.org/10.1038/nclimate1592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. James, 2004: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeor., 5, 656678, https://doi.org/10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1995: Evaluation of the global atmospheric moisture budget as seen from analyses. J. Climate, 8, 22552272, https://doi.org/10.1175/1520-0442(1995)008<2255:EOTGAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and M. Kimoto, 2001: Corrigendum. Quart. J. Roy. Meteor. Soc., 127, 733734, https://doi.org/10.1002/qj.49712757223.

  • Watanabe, M., and F.-F. Jin, 2003: A moist linear baroclinic model: Coupled dynamical-convective response to El Niño. J. Climate, 16, 11211139, https://doi.org/10.1175/1520-0442(2003)16<1121:AMLBMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. Zhang, M. Wen, X. Rong, and T. Li, 2014: Impact of Indian summer monsoon on the South Asian high and its influence on summer rainfall over China. Climate Dyn., 43, 12571269, https://doi.org/10.1007/s00382-013-1938-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. Zhang, M. Wen, and S. Yang, 2017: Relationship between the Asian westerly jet stream and summer rainfall over central Asia and north China: Roles of the Indian monsoon and the South Asian high. J. Climate, 30, 537552, https://doi.org/10.1175/JCLI-D-15-0814.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., and Y. Liu, 2016: Impacts of the Tibetan Plateau on Asian climate. Mulitscale Convection-Coupled Systems in the Tropics, Meteor. Monogr., No. 56, Amer. Meteor. Soc., 7.1–7.29.

    • Crossref
    • Export Citation
  • Wu, G., and Coauthors, 2015: Tibetan Plateau climate dynamics: Recent research progress and outlook. Natl. Sci. Rev., 2, 100116, https://doi.org/10.1093/nsr/nwu045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yadav, R. K., and M. K. Roxy, 2019: On the relationship between North India summer monsoon rainfall and east equatorial Indian Ocean warming. Global Planet. Change, 179, 2332, https://doi.org/10.1016/j.gloplacha.2019.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, Z. Liu, L. Wu, and F. Huang, 2009: Basin mode of Indian Ocean sea surface temperature and Northern Hemisphere circumglobal teleconnection. Geophys. Res. Lett., 36, L19705, https://doi.org/10.1029/2009GL039559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L. M., and Y. H. Zhang, 2017: Summary of current research on Central Asian vortex. Adv. Climate Change Res., 8, 311, https://doi.org/10.1016/j.accre.2017.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2013: A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys., 51, 525548, https://doi.org/10.1002/rog.20023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, A., O. Arakawa, K. Kamiguchi, H. Kawamoto, M. I. Nodzu, and A. Hamada, 2009: A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. SOLA, 5, 137140, https://doi.org/10.2151/sola.2009-035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Q. Tang, and D. Chen, 2017: Recent changes in the moisture source of precipitation over the Tibetan Plateau. J. Climate, 30, 18071819, https://doi.org/10.1175/JCLI-D-15-0842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., Y. Jiang, H. Chen, and Z. Wu, 2018: Double-mode adjustment of Tibetan Plateau heating to the summer circumglobal teleconnection in the Northern Hemisphere. Int. J. Climatol., 38, 663676, https://doi.org/10.1002/joc.5201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., H. Chen, and S. Zhao, 2019: A tripole pattern of summertime rainfall and the teleconnections linking northern China to the Indian subcontinent. J. Climate, 32, 36373653, https://doi.org/10.1175/JCLI-D-18-0659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., Z. Chen, H. Chen, Q. Ma, and A. Teshome, 2020: North Atlantic multidecadal variability enhancing decadal extratropical extremes in boreal late summer in the early twenty-first century. J. Climate, 33, 60476064, https://doi.org/10.1175/JCLI-D-19-0536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., Q. Ma, H. Chen, S. Zhao, and Z. Chen, 2021: Increasing warm-season precipitation in Asian drylands and response to reducing spring snow cover over the Tibetan Plateau. J. Climate, 34, 31293144, https://doi.org/10.1175/JCLI-D-20-0479.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., P. Wu, T. Zhou, and C. Xiao, 2018: ENSO transition from La Niña to El Niño drives prolonged spring–summer drought over North China. J. Climate, 31, 35093523, https://doi.org/10.1175/JCLI-D-17-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., X. L. Yuan, X. Chen, and G. P. Luo, 2016: Vegetation change and its response to climate change in Central Asia from 1982 to 2012. Chin. J. Plant Ecol., 40, 1323, https://doi.org/10.17521/cjpe.2015.0236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S., J. Zhang, and Z. Lv, 2020: Synergy effects of the Indian summer monsoon and the Tibetan Plateau heating on summer rainfall over North China. Adv. Meteor., 2020, 8395269, https://doi.org/10.1155/2020/8395269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Yong, A. Huang, Y. Zhou, D. Huang, Q. Yang, Y. Ma, M. Li, and G. Wei, 2014: Impact of the middle and upper tropospheric cooling over Central Asia on the summer rainfall in the Tarim Basin. J. Climate, 27, 47214732, https://doi.org/10.1175/JCLI-D-13-00456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., X. Yu, J. Yao, X. Dong, and H. Li, 2018: The concurrent effects of the South Asian monsoon and the plateau monsoon over the Tibetan Plateau on summer rainfall in the Tarim Basin of China. Int. J. Climatol., 39, 7488, https://doi.org/10.1002/joc.5783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Yu, A. M. Duan, and G. X. Wu, 2018: Interannual variability of late-spring circulation and diabatic heating over the Tibetan Plateau associated with Indian Ocean forcing. Adv. Atmos. Sci., 35, 927941, https://doi.org/10.1007/s00376-018-7217-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Q., Y. Liu, T. Shao, and Z. Y. Tan, 2021: Role of Tibetan Plateau in northern drought induced by changes in subtropical westerly jet. J. Climate, 34, 49554969, https://doi.org/10.1175/JCLI-D-20-0799.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 509 0 0
Full Text Views 1241 718 26
PDF Downloads 531 100 7