Large-Scale Environments of Successive Atmospheric River Events Leading to Compound Precipitation Extremes in California

Meredith A. Fish aDepartment of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey
bRutgers Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Meredith A. Fish in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3684-1042
,
James M. Done cCapacity Center for Climate and Weather Extremes, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by James M. Done in
Current site
Google Scholar
PubMed
Close
,
Daniel L. Swain dInstitute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, California
cCapacity Center for Climate and Weather Extremes, National Center for Atmospheric Research, Boulder, Colorado
eThe Nature Conservancy of California, San Francisco, California

Search for other papers by Daniel L. Swain in
Current site
Google Scholar
PubMed
Close
,
Anna M. Wilson fCenter for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Anna M. Wilson in
Current site
Google Scholar
PubMed
Close
,
Allison C. Michaelis gDepartment of Geographic and Atmospheric Sciences, Northern Illinois University, DeKalb, Illinois

Search for other papers by Allison C. Michaelis in
Current site
Google Scholar
PubMed
Close
,
Peter B. Gibson fCenter for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
hNational Institute of Water and Atmospheric Research, Wellington, New Zealand

Search for other papers by Peter B. Gibson in
Current site
Google Scholar
PubMed
Close
, and
F. Martin Ralph fCenter for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by F. Martin Ralph in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Successive atmospheric river (AR) events—known as AR families—can result in prolonged and elevated hydrological impacts relative to single ARs due to the lack of recovery time between periods of precipitation. Despite the outsized societal impacts that often stem from AR families, the large-scale environments and mechanisms associated with these compound events remain poorly understood. In this work, a new reanalysis-based 39-yr catalog of 248 AR family events affecting California between 1981 and 2019 is introduced. Nearly all (94%) of the interannual variability in AR frequency is driven by AR family versus single events. Using k-means clustering on the 500-hPa geopotential height field, six distinct clusters of large-scale patterns associated with AR families are identified. Two clusters are of particular interest due to their strong relationship with phases of El Niño–Southern Oscillation (ENSO). One of these clusters is characterized by a strong ridge in the Bering Sea and Rossby wave propagation, most frequently occurs during La Niña and neutral ENSO years, and is associated with the highest cluster-average precipitation across California. The other cluster, characterized by a zonal elongation of lower geopotential heights across the Pacific basin and an extended North Pacific jet, most frequently occurs during El Niño years and is associated with lower cluster-average precipitation across California but with a longer duration. In contrast, single AR events do not show obvious clustering of spatial patterns. This difference suggests that the potential predictability of AR families may be enhanced relative to single AR events, especially on subseasonal to seasonal time scales.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Meredith A. Fish, meredithfish1@gmail.com

Abstract

Successive atmospheric river (AR) events—known as AR families—can result in prolonged and elevated hydrological impacts relative to single ARs due to the lack of recovery time between periods of precipitation. Despite the outsized societal impacts that often stem from AR families, the large-scale environments and mechanisms associated with these compound events remain poorly understood. In this work, a new reanalysis-based 39-yr catalog of 248 AR family events affecting California between 1981 and 2019 is introduced. Nearly all (94%) of the interannual variability in AR frequency is driven by AR family versus single events. Using k-means clustering on the 500-hPa geopotential height field, six distinct clusters of large-scale patterns associated with AR families are identified. Two clusters are of particular interest due to their strong relationship with phases of El Niño–Southern Oscillation (ENSO). One of these clusters is characterized by a strong ridge in the Bering Sea and Rossby wave propagation, most frequently occurs during La Niña and neutral ENSO years, and is associated with the highest cluster-average precipitation across California. The other cluster, characterized by a zonal elongation of lower geopotential heights across the Pacific basin and an extended North Pacific jet, most frequently occurs during El Niño years and is associated with lower cluster-average precipitation across California but with a longer duration. In contrast, single AR events do not show obvious clustering of spatial patterns. This difference suggests that the potential predictability of AR families may be enhanced relative to single AR events, especially on subseasonal to seasonal time scales.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Meredith A. Fish, meredithfish1@gmail.com

Supplementary Materials

    • Supplemental Materials (pdf 605 KB)
Save
  • AghaKouchak, A., L. Cheng, O. Mazdiyasni, and A. Farahmand, 2014: Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophys. Res. Lett., 41, 88478852, https://doi.org/10.1002/2014GL062308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arcodia, M. C., B. P. Kirtman, and L. E. P. Siqueira, 2020: How MJO teleconnections and ENSO interference impact U.S. precipitation. J. Climate, 33, 46214640, https://doi.org/10.1175/JCLI-D-19-0448.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banzon, V., T. M. Smith, T. M. Chin, C. Liu, and W. Hankins, 2016: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data, 8, 165176, https://doi.org/10.5194/essd-8-165-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J. W., S. A. Michelson, P. J. Neiman, F. M. Ralph, and J. M. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080, https://doi.org/10.1175/MWR3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, Y., P. Giannakaki, H. von Waldow, C. Chevalier, S. Pfahl, and O. Martius, 2016: Clustering of regional-scale extreme precipitation events in southern Switzerland. Mon. Wea. Rev., 144, 347369, https://doi.org/10.1175/MWR-D-15-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., A. C. Clement, and B. Medeiros, 2019: Atmospheric blocking and other large-scale precursor patterns of landfalling atmospheric rivers in the North Pacific: A CESM2 study. J. Geophys. Res. Atmos., 124, 11 33011 353, https://doi.org/10.1029/2019JD030790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ., 3, 318.

    • Search Google Scholar
    • Export Citation
  • Blender, R., C. C. Raible, and F. Lunkeit, 2015: Non-exponential return time distributions for vorticity extremes explained by fractional Poisson processes. Quart. J. Roy. Meteor. Soc., 141, 249257, https://doi.org/10.1002/qj.2354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brands, S., J. M. Gutiérrez, and D. San-Martin, 2017: Twentieth-century atmospheric river activity along the west coasts of Europe and North America: Algorithm formulation, reanalysis uncertainty and links to atmospheric circulation patterns. Climate Dyn., 48, 27712795, https://doi.org/10.1007/s00382-016-3095-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. X., 2020: Increased impacts on US West Coast. Nat. Climate Change, 10, 603604, https://doi.org/10.1038/s41558-020-0828-7.

  • Carrera, M. L., R. W. Higgins, and V. E. Kousky, 2004: Downstream weather impacts associated with atmospheric blocking over the northeast Pacific. J. Climate, 17, 48234839, https://doi.org/10.1175/JCLI-3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaboureau, J. P., and A. J. Thorpe, 1999: Frontogenesis and the development of secondary wave cyclones in FASTEX. Quart. J. Roy. Meteor. Soc., 125, 925940, https://doi.org/10.1002/qj.49712555509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and Y. Fu, 2003: Using mean flow change as a proxy to infer interdecadal storm track variability. J. Climate, 16, 21782196, https://doi.org/10.1175/2773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, X. Xia, and M. Zheng, 2013: Storm-track activity in IPCC AR4/CMIP3 model simulations. J. Climate, 26, 246260, https://doi.org/10.1175/JCLI-D-11-00707.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., and S. L. Gray, 2006: Life-cycle simulations of shallow frontal waves and the impact of deformation strain. Quart. J. Roy. Meteor. Soc., 132, 21712190, https://doi.org/10.1256/qj.05.238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., and J. G. Pinto, 2020: Serial clustering of extratropical cyclones: A review of where, when and why it occurs. npj Climate Atmos. Sci., 3, 48, https://doi.org/10.1038/s41612-020-00152-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., G. H. Taylor, W. P. Gibson, T. W. Parzybok, G. L. Johnson, and P. Pasteris, 2001: High-quality spatial climate data sets for the United States and beyond. Trans. ASAE, 43, 19571962, https://doi.org/10.13031/2013.3101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson, and P. Pasteris, 2002: A knowledge-based approach to statistical mapping of climate. Climate Res., 22, 99113, https://doi.org/10.3354/cr022099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, https://doi.org/10.3390/w3020445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diday, E., and J. C. Simon, 1976: Digital Pattern Recognition. Springer, 208 pp.

  • Fereday, D. R., J. R. Knight, A. A. Scaife, C. K. Folland, and A. Philipp, 2008: Cluster analysis of North Atlantic–European circulation types and links with tropical Pacific sea surface temperatures. J. Climate, 21, 36873703, https://doi.org/10.1175/2007JCLI1875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fish, M. A., A. M. Wilson, and F. M. Ralph, 2019: Atmospheric river families: Definition and associated synoptic conditions. J. Hydrometeor., 20, 20912108, https://doi.org/10.1175/JHM-D-18-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, P. B., P. Uotila, S. E. Perkins-Kirkpatrick, L. V. Alexander, and A. J. Pitman, 2016: Evaluating synoptic systems in the CMIP5 climate models over the Australian region. Climate Dyn., 47, 22352251, https://doi.org/10.1007/s00382-015-2961-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, P. B., S. E. Perkins-Kirkpatrick, P. Uotila, A. S. Pepler, and L. V. Alexander, 2017: On the use of self-organizing maps for studying climate extremes. J. Geophys. Res. Atmos., 122, 38913903, https://doi.org/10.1002/2016JD026256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, P. B., D. E. Waliser, B. Guan, M. J. DeFlorio, F. M. Ralph, and D. L. Swain, 2020: Ridging associated with drought across the western and southwestern United States: Characteristics, trends, and predictability sources. J. Climate, 33, 24852508, https://doi.org/10.1175/JCLI-D-19-0439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., H. Binder, S. Pfahl, N. Piaget, and H. Wernli, 2014: Atmospheric processes triggering the central European floods in June 2013. Nat. Hazards Earth Syst. Sci., 14, 16911702, https://doi.org/10.5194/nhess-14-1691-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. Geophys. Res. Lett., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2017: Atmospheric rivers in 20 year weather and climate simulations: A multimodel, global evaluation. J. Geophys. Res. Atmos., 122, 55565581, https://doi.org/10.1002/2016JD026174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, N. P. Molotch, E. J. Fetzer, and P. J. Neiman, 2012: Does the Madden–Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon. Wea. Rev., 140, 325342, https://doi.org/10.1175/MWR-D-11-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, and F. M. Ralph, 2018: An intercomparison between reanalysis and dropsonde observations of the total water vapor transport in individual atmospheric rivers. J. Hydrometeor., 19, 321337, https://doi.org/10.1175/JHM-D-17-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R., and R. Grumm, 2001: Using normalized climatological anomalies to rank synoptic-scale events objectively. Mon. Wea. Rev., 129, 24262442, https://doi.org/10.1175/1520-0493(2001)129<2426:UNCATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 1986: The time-mean flow and variability in a nonlinear model of the atmosphere with tropical diabatic forcing. J. Atmos. Sci., 43, 7289, https://doi.org/10.1175/1520-0469(1986)043<0072:TTMFAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, https://doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henn, B., K. N. Musselman, L. Lestak, F. M. Ralph, and N. P. Molotch, 2020: Extreme runoff generation from atmospheric river driven snow melt during the 2017 Oroville dam spillway incident. Geophys. Res. Lett., 47, e2020GL088189, https://doi.org/10.1029/2020GL088189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, H., F. Dominguez, Z. Wang, D. A. Lavers, G. Zhang, and F. M. Ralph, 2017: Linking atmospheric river hydrological impacts on the U.S. West Coast to Rossby wave breaking. J. Climate, 30, 33813399, https://doi.org/10.1175/JCLI-D-16-0386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H.-M. Zhang, 2020: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) version 2.1. J. Climate, 34, 29232939, https://doi.org/10.1175/JCLI-D-20-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., A. D. Hall, and N. Berg, 2018: Anthropogenic warming impacts on today’s Sierra Nevada snowpack and flood risk. Geophys. Res. Lett., 45, 62156222, https://doi.org/10.1029/2018GL077432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, N., 2011: A new objective procedure for classifying New Zealand synoptic weather types during 1958–2008. Int. J. Climatol., 31, 863879, https://doi.org/10.1002/joc.2126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J. H., and Coauthors, 2019: The extratropical transition of tropical cyclones. Part II: Interaction with the midlatitude flow, downstream impacts, and implications for predictability. Mon. Wea. Rev., 147, 10771106, https://doi.org/10.1175/MWR-D-17-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirono, D. G. C., K. J. Hennessy, and M. R. Grose, 2017: Increasing risk of months with low rainfall and high temperature in southeast Australia for the past 150 years. Climate Risk Manage., 16, 1021, https://doi.org/10.1016/j.crm.2017.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamjiri, M. A., M. D. Dettinger, F. M. Ralph, and B. Guan, 2017: Hourly storm characteristics along the U.S. West Coast: Role of atmospheric rivers in extreme precipitation. Geophys. Res. Lett., 44, 70207028, https://doi.org/10.1002/2017GL074193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., and S. B. Feldstein, 2013: Detecting ozone- and greenhouse gas-driven wind trends with observational data. Science, 339, 563567, https://doi.org/10.1126/science.1225154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leonard, M., and Coauthors, 2014: A compound event framework for understanding extreme impacts. Wiley Interdiscip. Rev.: Climate Change, 5, 113128, https://doi.org/10.1002/wcc.252.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 2006: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Liu, X., X. Ren, and X.-Q. Yang, 2016: Decadal changes in multiscale water vapor transport and atmospheric river associated with the Pacific decadal oscillation and the North Pacific Gyre Oscillation. J. Hydrometeor., 17, 273285, https://doi.org/10.1175/JHM-D-14-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mailier, P. J., D. B. Stephenson, C. A. T. Ferro, and K. I. Hodges, 2006: Serial clustering of extratropical cyclones. Mon. Wea. Rev., 134, 22242240, https://doi.org/10.1175/MWR3160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., and Coauthors, 2013: The role of upper-level dynamics and surface processes for the Pakistan flood of July 2010. Quart. J. Roy. Meteor. Soc., 139, 17801797, https://doi.org/10.1002/qj.2082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., S. Pfahl, and C. Chevalier, 2016: A global quantification of compound precipitation and wind extremes. Geophys. Res. Lett., 43, 77097717, https://doi.org/10.1002/2016GL070017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masato, G., B. K. Hoskins, and T. J. Woolings, 2011: Wave-breaking characteristics of midlatitude blocking. Quart. J. Roy. Meteor. Soc., 138, 12851296, https://doi.org/10.1002/qj.990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2000: Propagation mechanisms for the Madden–Julian Oscillation. Quart. J. Roy. Meteor. Soc., 126, 26372651, https://doi.org/10.1002/qj.49712656902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaelis, A. C., A. C. Martin, M. A. Fish, C. W. Hecht, and F. M. Ralph, 2021: Modulation of atmospheric rivers by mesoscale frontal waves and latent heating: Comparison of two U.S. West Coast events. Mon. Wea. Rev., 149, 27552776, https://doi.org/10.1175/MWR-D-20-0364.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, J.-Y., B. Wang, and K.-J. Ha, 2011: ENSO regulation of MJO teleconnection. Climate Dyn., 37, 11331149, https://doi.org/10.1007/s00382-010-0902-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B. J., A. B. White, D. J. Gottas, and P. J. Neiman, 2020: Extreme precipitation events in northern California during winter 2016–17: Multiscale analysis and climatological perspective. Mon. Wea. Rev., 148, 10491074, https://doi.org/10.1175/MWR-D-19-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, B. J., A. B. White, D. J. Gottas, and P. J. Neiman, 2021: Characteristics of long-duration heavy precipitation events along the West Coast of the United States. Mon. Wea. Rev., 149, 22552277, https://doi.org/10.1175/MWR-D-20-0336.1.

    • Search Google Scholar
    • Export Citation
  • Moron, V., A. W. Robertson, M. N. Ward, and O. Ndiaye, 2008: Weather types and rainfall over Senegal. Part I: Observational analysis. J. Climate, 21, 266287, https://doi.org/10.1175/2007JCLI1601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, and E. D. Maloney, 2016: All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Climate, 29, 48854903, https://doi.org/10.1175/JCLI-D-15-0655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, E. D. Maloney, and C. F. Baggett, 2018: Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden–Julian oscillation and quasi-biennial oscillation. npj Climate Atmos. Sci., 1, 20177, https://doi.org/10.1038/s41612-017-0008-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., M. Nakamura, and J. L. Anderson, 1997: The role of high- and low-frequency dynamics in blocking formation. Mon. Wea. Rev., 125, 20742093, https://doi.org/10.1175/1520-0493(1997)125<2074:TROHAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North American based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, https://doi.org/10.1175/2007JHM855.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oakley, N. S., J. T. Lancaster, B. J. Hatchett, J. Stock, F. M. Ralph, S. Roj, and S. Lukashov, 2018: A 22-year climatology of cool season hourly precipitation thresholds conducive to shallow landslides in California. Earth Interact., 22 (14), 135, https://doi.org/10.1175/EI-D-17-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. P. Sheldon, 1995: Stages in the energetics of baroclinic systems. Tellus, 47A, 605628, https://doi.org/10.3402/tellusa.v47i5.11553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and J. Räisänen, 2002: Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature, 415, 512514, https://doi.org/10.1038/415512a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., J. P. O’Brien, M. D. Risser, A. M. Rhoades, T. A. O’Brien, P. A. Ullrich, D. A. Stone, and W. D. Collins, 2020: Maximizing ENSO as a source of western US hydroclimate predictability. Climate Dyn., 54, 351372, https://doi.org/10.1007/s00382-019-05004-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and G. Magnusdottir, 2014: Dynamics of landfalling atmospheric river over the North Pacific in 30-yrs of MERRA reanalysis. J. Climate, 27, 71337150, https://doi.org/10.1175/JCLI-D-14-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and G. Magnusdottir, 2016: Persistent landfalling atmospheric rivers over the west coast of North America. J. Geophys. Res. Atmos., 121, 13 28713 300, https://doi.org/10.1002/2016JD025549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., I. Gomara, G. Masato, H. F. Dacre, T. Woollings, and R. Caballero, 2014: Large-scale dynamics associated with clustering of extratropical cyclones affecting western Europe. J. Geophys. Res. Atmos., 119, 13 70413 719, https://doi.org/10.1002/2014JD022305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Priestley, M. D. K., J. G. Pinto, H. F. Dacre, and L. C. Shaffrey, 2017: Rossby wave breaking, the upper level jet, and serial clustering of extratropical cyclones in western Europe. Geophys. Res. Lett., 44, 514521, https://doi.org/10.1002/2016GL071277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Priestley, M. D. K., H. F. Dacre, L. C. Shaffrey, S. Schemm, and J. G. Pinto, 2020: The role of secondary cyclones and cyclone families for the North Atlantic storm track and clustering over western Europe. Quart. J. Roy. Meteor. Soc., 146, 11841205, https://doi.org/10.1002/qj.3733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/1998. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910, https://doi.org/10.1175/MWR2896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., T. Coleman, P. J. Neiman, R. J. Zamora, and M. D. Dettinger, 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal Northern California. J. Hydrometeor., 14, 443459, https://doi.org/10.1175/JHM-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2017: Dropsonde observations of total integrated water vapor transport within North Pacific atmospheric rivers. J. Hydrometeor., 18, 25772596, https://doi.org/10.1175/JHM-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., G. A. Grell, and Y. Kuo, 1993: The ERICA IOP 5 storm. Part II: Sensitivity tests and further diagnosis based on model output. Mon. Wea. Rev., 121, 15951612, https://doi.org/10.1175/1520-0493(1993)121<1595:TEISPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roller, C. D., J. H. Qian, L. Agel, M. Barlow, and V. Moron, 2016: Winter weather regimes in the northeast United States. J. Climate, 29, 29632980, https://doi.org/10.1175/JCLI-D-15-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryoo, J. M., Y. Kaspi, D. W. Waugh, G. N. Kiladis, D. E. Waliser, E. J. Fetzer, and J. Kim, 2013: Impact of Rossby wave breaking on U.S. West Coast winter precipitation during ENSO events. J. Climate, 26, 63606382, https://doi.org/10.1175/JCLI-D-12-00297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schemm, S., and M. Sprenger, 2015: Frontal‐wave cyclogenesis in the North Atlantic—A climatological characterisation. Quart. J. Roy. Meteor. Soc., 141, 29893005, https://doi.org/10.1002/qj.2584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedlmeier, K., H. Feldmann, and G. Schädler, 2018: Compound summer temperature and precipitation extremes over central Europe. Theor. Appl. Climatol., 131, 14931501, https://doi.org/10.1007/s00704-017-2061-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, Cambridge University Press, 109230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 1983: The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of ‘blocking’ flow fields. Quart. J. Roy. Meteor. Soc., 109, 737761, https://doi.org/10.1002/qj.49710946204.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux of stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karloy, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geol. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Hurk, B., E. van Meijgaard, P. de Valk, K. J. van Heeringen, and J. Gooijer, 2015: Analysis of a compounding surge and precipitation event in the Netherlands. Environ. Res. Lett., 10, 035001, https://doi.org/10.1088/1748-9326/10/3/035001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., M. C. Wheeler, H. H. Hendon, C. J. Schreck III, C. D. Thorncroft, and G. N. Kiladis, 2013: A modified multivariate Madden–Julian oscillation index using velocity potential. Mon. Wea. Rev., 141, 41974210, https://doi.org/10.1175/MWR-D-12-00327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahl, T., S. Jain, J. Bender, S. D. Meyers, and M. E. Luther, 2015: Increasing risk of compounding flooding from storm surge and rainfall for major US cities. Nat. Climate Change, 5, 10931097, https://doi.org/10.1038/nclimate2736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, 2003: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84, 3350, https://doi.org/10.1175/BAMS-84-1-33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., B. J. Moore, D. J. Gottas, and P. J. Neiman, 2019: Winter storm conditions leading to excessive runoff above California’s Oroville dam during January and February 2017. Bull. Amer. Meteor. Soc., 100, 5570, https://doi.org/10.1175/BAMS-D-18-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, I. N., and C. M. Patricola, 2018: Diversity of ENSO events unified by convective threshold sea surface temperature: A nonlinear ENSO index. Geophys. Res. Lett., 45, 92369244, https://doi.org/10.1029/2018GL079203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, A. C., D. Keyser, and L. F. Bosart, 2019a: The development of the North Pacific jet phase diagram as an objective tool to monitor the state and forecast skill of the upper-tropospheric flow pattern. Wea. Forecasting, 34, 199219, https://doi.org/10.1175/WAF-D-18-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, A. C., L. F. Bosart, and D. Keyser, 2019b: Antecedent North Pacific jet regimes conducive to the development of continental U.S. extreme temperature events during the cool season. Wea. Forecasting, 34, 393414, https://doi.org/10.1175/WAF-D-18-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolf, G., and V. Wirth, 2017: Diagnosing the horizontal propagation of Rossby wave packets along the midlatitude waveguide. Mon. Wea. Rev., 145, 32473264, https://doi.org/10.1175/MWR-D-16-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian Oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., F. M. Ralph, and M. Zheng, 2019: The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophys. Res. Lett., 46, 18141823, https://doi.org/10.1029/2018GL079071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, S., M. L’Heureux, S. Weaver, and A. Kumar, 2012: A composite study of the MJO influence on the surface air temperature and precipitation over the continental United States. Climate Dyn., 38, 14591471, https://doi.org/10.1007/s00382-011-1001-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., D. Yang, S.-P. Xie, and J. Ma, 2020: Amplified Madden–Julian oscillation impacts in the Pacific–North America region. Nat. Climate Change, 10, 654660, https://doi.org/10.1038/s41558-020-0814-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zscheischler, J., and S. I. Seneviratne, 2017: Dependence of drivers affects risks associated with compound events. Sci. Adv., 3, e1700263, https://doi.org/10.1126/sciadv.1700263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zscheischler, J., and Coauthors, 2018: Future climate risk from compound events. Nat. Climate Change, 8, 469477, https://doi.org/10.1038/s41558-018-0156-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zscheischler, J., and Coauthors, 2020: A typology of compound weather and climate events. Nat. Rev. Earth Environ., 1, 333347, https://doi.org/10.1038/s43017-020-0060-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2414 0 0
Full Text Views 3152 1421 80
PDF Downloads 1781 366 26