Diurnal Differences in Tropical Maritime Anvil Cloud Evolution

Blaž Gasparini aUniversity of Washington, Seattle, Washington
bUniversity of Vienna, Vienna, Austria

Search for other papers by Blaž Gasparini in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7177-0155
,
Adam B. Sokol aUniversity of Washington, Seattle, Washington

Search for other papers by Adam B. Sokol in
Current site
Google Scholar
PubMed
Close
,
Casey J. Wall cScripps Institution of Oceanography, San Diego, California

Search for other papers by Casey J. Wall in
Current site
Google Scholar
PubMed
Close
,
Dennis L. Hartmann aUniversity of Washington, Seattle, Washington

Search for other papers by Dennis L. Hartmann in
Current site
Google Scholar
PubMed
Close
, and
Peter N. Blossey aUniversity of Washington, Seattle, Washington

Search for other papers by Peter N. Blossey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Satellite observations of tropical maritime convection indicate an afternoon maximum in anvil cloud fraction that cannot be explained by the diurnal cycle of deep convection peaking at night. We use idealized cloud-resolving model simulations of single anvil cloud evolution pathways, initialized at different times of the day, to show that tropical anvil clouds formed during the day are more widespread and longer lasting than those formed at night. This diurnal difference is caused by shortwave radiative heating, which lofts and spreads anvil clouds via a mesoscale circulation that is largely absent at night, when a different, longwave-driven circulation dominates. The nighttime circulation entrains dry environmental air that erodes cloud top and shortens anvil lifetime. Increased ice nucleation in more turbulent nighttime conditions supported by the longwave cloud-top cooling and cloud-base heating dipole cannot compensate for the effect of diurnal shortwave radiative heating. Radiative–convective equilibrium simulations with a realistic diurnal cycle of insolation confirm the crucial role of shortwave heating in lofting and sustaining anvil clouds. The shortwave-driven mesoscale ascent leads to daytime anvils with larger ice crystal size, number concentration, and water content at cloud top than their nighttime counterparts.

Significance Statement

Deep convective activity and rainfall peak at night over the tropical oceans. However, anvil clouds that originate from the tops of deep convective clouds reach their largest extent in the afternoon hours. We study the underlying physical mechanisms that lead to this discrepancy by simulating the evolution of anvil clouds with a high-resolution model. We find that the absorption of sunlight by ice crystals lofts and spreads the daytime anvil clouds over a larger area, increasing their lifetime, changing their properties, and thus influencing their impact on climate. Our findings show that it is important not only to simulate the correct onset of deep convection but also to correctly represent anvil cloud evolution for skillful simulations of the tropical energy balance.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Blaž Gasparini, blaz.gasparini@univie.ac.at

Abstract

Satellite observations of tropical maritime convection indicate an afternoon maximum in anvil cloud fraction that cannot be explained by the diurnal cycle of deep convection peaking at night. We use idealized cloud-resolving model simulations of single anvil cloud evolution pathways, initialized at different times of the day, to show that tropical anvil clouds formed during the day are more widespread and longer lasting than those formed at night. This diurnal difference is caused by shortwave radiative heating, which lofts and spreads anvil clouds via a mesoscale circulation that is largely absent at night, when a different, longwave-driven circulation dominates. The nighttime circulation entrains dry environmental air that erodes cloud top and shortens anvil lifetime. Increased ice nucleation in more turbulent nighttime conditions supported by the longwave cloud-top cooling and cloud-base heating dipole cannot compensate for the effect of diurnal shortwave radiative heating. Radiative–convective equilibrium simulations with a realistic diurnal cycle of insolation confirm the crucial role of shortwave heating in lofting and sustaining anvil clouds. The shortwave-driven mesoscale ascent leads to daytime anvils with larger ice crystal size, number concentration, and water content at cloud top than their nighttime counterparts.

Significance Statement

Deep convective activity and rainfall peak at night over the tropical oceans. However, anvil clouds that originate from the tops of deep convective clouds reach their largest extent in the afternoon hours. We study the underlying physical mechanisms that lead to this discrepancy by simulating the evolution of anvil clouds with a high-resolution model. We find that the absorption of sunlight by ice crystals lofts and spreads the daytime anvil clouds over a larger area, increasing their lifetime, changing their properties, and thus influencing their impact on climate. Our findings show that it is important not only to simulate the correct onset of deep convection but also to correctly represent anvil cloud evolution for skillful simulations of the tropical energy balance.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Blaž Gasparini, blaz.gasparini@univie.ac.at
Save
  • Ansmann, A., and Coauthors, 2008: Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment. J. Geophys. Res., 113, D04210, https://doi.org/10.1029/2007JD008785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bain, C. L., G. Magnusdottir, P. Smyth, and H. Stern, 2010: Diurnal cycle of the intertropical convergence zone in the east Pacific. J. Geophys. Res., 115, D23116, https://doi.org/10.1029/2010JD014835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2017: Cloud ice properties: In situ measurement challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., 9.19.23, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1.

    • Search Google Scholar
    • Export Citation
  • Berry, E., and G. G. Mace, 2014: Cloud properties and radiative effects of the Asian summer monsoon derived from A-Train data. J. Geophys. Res. Atmos., 119, 94929508, https://doi.org/10.1002/2014JD021458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151183, https://doi.org/10.2151/jmsj.2016-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., and M. D. Fowler, 2015: The diurnal cycle of precipitation in tropical cyclones. J. Climate, 28, 53255334, https://doi.org/10.1175/JCLI-D-14-00804.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cazenave, Q., M. Ceccaldi, J. Delanoë, J. Pelon, S. Groß, and A. Heymsfield, 2019: Evolution of DARDAR-CLOUD ice cloud retrievals: New parameters and impacts on the retrieved microphysical properties. Atmos. Meas. Tech., 12, 28192835, https://doi.org/10.5194/amt-12-2819-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. J. Houze, 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, https://doi.org/10.1002/qj.49712353806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chepfer, H., H. Brogniez, and V. Noel, 2019: Diurnal variations of cloud and relative humidity profiles across the tropics. Sci. Rep., 9, 16045, https://doi.org/10.1038/s41598-019-52437-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, W. H. Schubert, and J. H. Ruppert, 2018: Diurnal cycle of the ITCZ in DYNAMO. J. Climate, 31, 45434562, https://doi.org/10.1175/JCLI-D-17-0670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128, https://doi.org/10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delanoë, J. M., and R. J. Hogan, 2008: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer. J. Geophys. Res., 113, D07204, https://doi.org/10.1029/2007JD009000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, https://doi.org/10.1073/pnas.0910818107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, M., and G. G. Mace, 2008: Cirrus microphysical properties and air motion statistics using cloud radar Doppler moments. Part II: Climatology. J. Appl. Meteor. Climatol., 47, 32213235, https://doi.org/10.1175/2008JAMC1949.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinh, T. P., D. R. Durran, and T. P. Ackerman, 2010: Maintenance of tropical tropopause layer cirrus. J. Geophys. Res., 115, D02104, https://doi.org/10.1029/2009JD012735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. D. Thorncroft, and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 39003919, https://doi.org/10.1175/MWR-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., T. Dinh, M. Ammerman, and T. Ackerman, 2009: The mesoscale dynamics of thin tropical tropopause cirrus. J. Atmos. Sci., 66, 28592873, https://doi.org/10.1175/2009JAS3046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feofilov, A. G., and C. J. Stubenrauch, 2019: Diurnal variation of high-level clouds from the synergy of AIRS and IASI space-borne infrared sounders. Atmos. Chem. Phys., 19, 13 95713 972, https://doi.org/10.5194/acp-19-13957-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, R., A. D. Del Genio, and W. B. Rossow, 1990: Behavior of deep convective clouds in the tropical Pacific deduced from ISCCP radiances. J. Climate, 3, 11291152, https://doi.org/10.1175/1520-0442(1990)003<1129:BODCCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasparini, B., and U. Lohmann, 2016: Why cirrus cloud seeding cannot substantially cool the planet. J. Geophys. Res. Atmos., 121, 48774893, https://doi.org/10.1002/2015JD024666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasparini, B., P. N. Blossey, D. L. Hartmann, G. Lin, and J. Fan, 2019: What drives the life cycle of tropical anvil clouds? J. Adv. Model. Earth Syst., 11, 25862605, https://doi.org/10.1029/2019MS001736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gasparini, B., P. J. Rasch, D. L. Hartmann, C. J. Wall, and M. Dütsch, 2021: A Lagrangian perspective on tropical anvil cloud lifecycle in present and future climate. J. Geophys. Res. Atmos., 126, e2020JD033487, https://doi.org/10.1029/2020JD033487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson, 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, https://doi.org/10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and S. E. Berry, 2017: The balanced radiative effect of tropical anvil clouds. J. Geophys. Res. Atmos., 122, 50035020, https://doi.org/10.1002/2017JD026460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., B. Gasparini, S. E. Berry, and P. N. Blossey, 2018: The life cycle and net radiative effect of tropical anvil clouds. J. Adv. Model. Earth Syst., 10, 30123029, https://doi.org/10.1029/2018MS001484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and Coauthors, 2017: Cirrus clouds. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., 2.12.26, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0010.1.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys., 12, 98179854, https://doi.org/10.5194/acp-12-9817-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakob, C., M. S. Singh, and L. Jungandreas, 2019: Radiative convective equilibrium and organized convection: An observational perspective. J. Geophys. Res. Atmos., 124, 54185430, https://doi.org/10.1029/2018JD030092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 2017: The NASA Airborne Tropical Tropopause Experiment (ATTREX): High-altitude aircraft measurements in the tropical western Pacific. Bull. Amer. Meteor. Soc., 98, 129143, https://doi.org/10.1175/BAMS-D-14-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., S. C. van den Heever, and L. D. Grant, 2018: The lifecycles of ice crystals detrained from the tops of deep convection. J. Geophys. Res. Atmos., 123, 96249634, https://doi.org/10.1029/2018JD028832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kärcher, B., J. Hendricks, and U. Lohmann, 2006: Physically based parameterization of cirrus cloud formation for use in global atmospheric models. J. Geophys. Res., 111, D01205, https://doi.org/10.1029/2005JD006219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krämer, M., and Coauthors, 2016: A microphysics guide to cirrus clouds—Part 1: Cirrus types. Atmos. Chem. Phys., 16, 34633483, https://doi.org/10.5194/acp-16-3463-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krämer, M., and Coauthors, 2020: A microphysics guide to cirrus—Part 2: Climatologies of clouds and humidity from observations. Atmos. Chem. Phys., 20, 12 56912 608, https://doi.org/10.5194/acp-20-12569-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., 1963: The diurnal precipitation change over the sea. J. Atmos. Sci., 20, 551556, https://doi.org/10.1175/1520-0469(1963)020<0551:TDPCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and J. E. Penner, 2005: Ice nucleation parameterization for global models. Meteor. Z., 14, 499514, https://doi.org/10.1127/0941-2948/2005/0059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., F. Lüond, and F. Mahrt, 2016: An Introduction to Clouds: From the Microscale to Climate. Cambridge University Press, 505 pp.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., M. Deng, B. Soden, and E. Zipser, 2006: Association of tropical cirrus in the 10–15-km layer with deep convective sources: An observational study combining millimeter radar data and satellite-derived trajectories. J. Atmos. Sci., 63, 480503, https://doi.org/10.1175/JAS3627.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part II: Model simulations. Mon. Wea. Rev., 131, 813829, https://doi.org/10.1175/1520-0493(2003)131<0813:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721, https://doi.org/10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., and T. Koop, 2005: Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quart. J. Roy. Meteor. Soc., 131, 15391565, https://doi.org/10.1256/qj.04.94.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, https://doi.org/10.1175/1520-0442-16.10.1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L. L., and Coauthors, 2017: The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment. Bull. Amer. Meteor. Soc., 98, 106128, https://doi.org/10.1175/BAMS-D-14-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502525, https://doi.org/10.1109/TGRS.2016.2610522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protopapadaki, S. E., C. J. Stubenrauch, and A. G. Feofilov, 2017: Upper tropospheric cloud systems derived from IR sounders: Properties of cirrus anvils in the tropics. Atmos. Chem. Phys., 17, 38453859, https://doi.org/10.5194/acp-17-3845-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Harshvardhan, and D. A. Dazlich, 1989: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci., 48, 4062, https://doi.org/10.1175/1520-0469(1991)048<0040:DVOTHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., and C. Hohenegger, 2018: Diurnal circulation adjustment and organized deep convection. J. Climate, 31, 48994916, https://doi.org/10.1175/JCLI-D-17-0693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., and D. Klocke, 2019: The two diurnal modes of tropical upward motion. Geophys. Res. Lett., 46, 29112921, https://doi.org/10.1029/2018GL081806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., and M. E. O’Neill, 2019: Diurnal cloud and circulation changes in simulated tropical cyclones. Geophys. Res. Lett., 46, 502511, https://doi.org/10.1029/2018GL081302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., A. A. Wing, X. Tang, and E. L. Duran, 2020: The critical role of cloud–infrared radiation feedback in tropical cyclone development. Proc. Natl. Acad. Sci. USA, 117, 27 88427 892, https://doi.org/10.1073/pnas.2013584117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, C. T., and T. J. Garrett, 2013: A simple framework for the dynamic response of cirrus clouds to local diabatic radiative heating. J. Atmos. Sci., 70, 14091422, https://doi.org/10.1175/JAS-D-12-056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., X. Liu, and K. Zhang, 2015: Effects of preexisting ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5). Atmos. Chem. Phys., 15, 15031520, https://doi.org/10.5194/acp-15-1503-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sokol, A. B., and D. L. Hartmann, 2020: Tropical anvil clouds: Radiative driving toward a preferred state. J. Geophys. Res. Atmos., 125, e2020JD033107, https://doi.org/10.1029/2020JD033107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., S. Lang, J. Simpson, C.-H. Sui, B. Ferrier, and M.-D. Chou, 1996: Mechanisms of cloud-radiation interaction in the tropics and midlatitudes. J. Atmos. Sci., 53, 26242651, https://doi.org/10.1175/1520-0469(1996)053<2624:MOCRII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Diedenhoven, B., A. S. Ackerman, A. M. Fridlind, B. Cairns, and J. Riedi, 2020: Global statistics of ice microphysical and optical properties at tops of optically thick ice clouds. J. Geophys. Res. Atmos., 125, e2019JD031811, https://doi.org/10.1029/2019JD031811.

    • Search Google Scholar
    • Export Citation
  • Wall, C. J., J. R. Norris, B. Gasparini, W. L. Smith Jr., M. M. Thieman, and O. Sourdeval, 2020: Observational evidence that radiative heating modifies the life cycle of tropical anvil clouds. J. Climate, 33, 86218640, https://doi.org/10.1175/JCLI-D-20-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and M. A. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci., 37, 24582469, https://doi.org/10.1175/1520-0469(1980)037<2458:CVVEIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 501 0 0
Full Text Views 1346 769 39
PDF Downloads 720 245 14