Different Responses of Central Asian Precipitation to Strong and Weak El Niño Events

Zhang Chen aPlateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China

Search for other papers by Zhang Chen in
Current site
Google Scholar
PubMed
Close
,
Renguang Wu bDepartment of Atmospheric Sciences and Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou, China
cSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Renguang Wu in
Current site
Google Scholar
PubMed
Close
,
Yong Zhao aPlateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China

Search for other papers by Yong Zhao in
Current site
Google Scholar
PubMed
Close
, and
Zhibiao Wang dCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhibiao Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study investigated impacts of strong and weak El Niño events on central Asian precipitation variability from El Niño developing years to decaying years. It is found that strong El Niño events persistently enhance central Asian precipitation from the mature winter to decaying summer. Large warm sea surface temperature (SST) anomalies in the tropical central-eastern Pacific induce anomalous upper-level divergence and updraft over central Asia through large-scale convergence and divergence in the mature winter and decaying spring. Meanwhile, the associated wind anomalies induce anomalous eastward and northeastward moisture flux from the North Atlantic and the Arabian Sea to central Asia. Both anomalous ascent and moisture flux convergence favor above-normal precipitation over central Asia in the mature winter and decaying spring. The El Niño events induced central Asian precipitation anomalies that are extended to the decaying summer due to the role of soil moisture. Increased rainfall in winter and spring enhances soil moisture in the following summer, which in turn contributes to more precipitation in summer through modulating regional evaporation. During weak El Niño events, significant wet anomalies are only seen in the developing autumn, which result from anomalous southeastward moisture flux from the Arctic Ocean, and the abnormal signals are weak in the other seasons. The different responses of central Asian precipitation to strong and weak El Niño events may be attributed to the difference in intensity of tropical SST anomalies between the two types of events.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yong Zhao, zhaoy608@cuit.edu.cn

Abstract

The present study investigated impacts of strong and weak El Niño events on central Asian precipitation variability from El Niño developing years to decaying years. It is found that strong El Niño events persistently enhance central Asian precipitation from the mature winter to decaying summer. Large warm sea surface temperature (SST) anomalies in the tropical central-eastern Pacific induce anomalous upper-level divergence and updraft over central Asia through large-scale convergence and divergence in the mature winter and decaying spring. Meanwhile, the associated wind anomalies induce anomalous eastward and northeastward moisture flux from the North Atlantic and the Arabian Sea to central Asia. Both anomalous ascent and moisture flux convergence favor above-normal precipitation over central Asia in the mature winter and decaying spring. The El Niño events induced central Asian precipitation anomalies that are extended to the decaying summer due to the role of soil moisture. Increased rainfall in winter and spring enhances soil moisture in the following summer, which in turn contributes to more precipitation in summer through modulating regional evaporation. During weak El Niño events, significant wet anomalies are only seen in the developing autumn, which result from anomalous southeastward moisture flux from the Arctic Ocean, and the abnormal signals are weak in the other seasons. The different responses of central Asian precipitation to strong and weak El Niño events may be attributed to the difference in intensity of tropical SST anomalies between the two types of events.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yong Zhao, zhaoy608@cuit.edu.cn
Save
  • Aizen, E. M., V. B. Aizen, J. M. Melack, T. Nakamura, and T. Ohta, 2001: Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int. J. Climatol., 21, 535556, https://doi.org/10.1002/joc.626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bothe, O., K. Fraedrich, and X. Zhu, 2012: Precipitation climate of central Asia and the large-scale atmospheric circulation. Theor. Appl. Climatol., 108, 345354, https://doi.org/10.1007/s00704-011-0537-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., J. Chen, and W. Huang, 2009: A discussion on the westerly-dominated climate model in mid-latitude Asia during the modern interglacial period (in Chinese). Earth Sci. Front, 16, 2332, https://doi.org/10.3321/j.issn:1005-2321.2009.06.003.

    • Search Google Scholar
    • Export Citation
  • Chen, F., W. Huang, L. Jin, J. Chen, and J. Wang, 2011: Spatiotemporal precipitation variations in the arid central Asia in the context of global warming. Sci. China Earth Sci., 54, 18121821, https://doi.org/10.1007/s11430-011-4333-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. F., R. Wu, and W. Chen, 2015: The changing relationship between interannual variations of the North Atlantic Oscillation and northern tropical Atlantic SST. J. Climate, 28, 485504, https://doi.org/10.1175/JCLI-D-14-00422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., S. Wang, Z. Hu, Q. Zhou, and Q. Hu, 2018: Spatiotemporal characteristics of seasonal precipitation and their relationships with ENSO in central Asia during 1901–2013. J. Geogr. Sci., 28, 13411368, https://doi.org/10.1007/s11442-018-1529-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conil, S., H. Douville, and S. Tyteca, 2007: The relative influence of soil moisture and SST in climate predictability explored within ensembles of AMIP type experiments. Climate Dyn., 28, 125145, https://doi.org/10.1007/s00382-006-0172-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., C. A. Schlosser, and K. L. Brubaker, 2009: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278288, https://doi.org/10.1175/2008JHM1016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., L. Wang, W. Chen, S. K. Fong, and K. C. Leong, 2010: Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter. J. Geophys. Res., 115, D24122, https://doi.org/10.1029/2010JD014761.

    • Search Google Scholar
    • Export Citation
  • Gerlitz, L., E. Steirou, C. Schneider, V. Moron, S. Vorogushyn, and B. Merz, 2018: Variability of the cold season climate in central Asia. Part I: Weather types and their tropical and extratropical drivers. J. Climate, 31, 71857207, https://doi.org/10.1175/JCLI-D-17-0715.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y. G., J. S. Kug, J. Y. Park, and F. F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., M. Hoerling, J. Eischeid, K. Wolter, R. Dole, J. Perlwitz, T. Xu, and L. Cheng, 2016: Does El Niño intensity matter for California precipitation? Geophys. Res. Lett., 43, 819825, https://doi.org/10.1002/2015GL067102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., Q. Zhou, X. Chen, C. Qian, S. Wang, and J. Li, 2017: Variations and changes of annual precipitation in central Asia over the last century. Int. J. Climatol., 37, 157170, https://doi.org/10.1002/joc.4988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, A., Y. Zhou, Y. Zhang, D. Huang, Y. Zhao, and H. Wu, 2014: Changes of the annual precipitation over central Asia in the twenty-first century projected by multimodels of CMIP5. J. Climate, 27, 66276646, https://doi.org/10.1175/JCLI-D-14-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., F. Chen, S. Feng, J. Chen, and X. Zhang, 2013: Interannual precipitation variations in the mid-latitude Asia and their associated with large-scale atmospheric circulation. Chin. Sci. Bull., 58, 39623968, https://doi.org/10.1007/s11434-013-5970-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J., T. Zhou, H. Wang, Y. Qian, D. Noone, and W. Man, 2020: Tracking moisture sources of precipitation over central Asia: A study based on the water-source-tagging method. J. Climate, 33, 10 33910 355, https://doi.org/10.1175/JCLI-D-20-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanae, S., Y. Hirabayashi, T. Yamada, and T. Oki, 2006: Influence of “realistic” land surface wetness on predictability of seasonal precipitation in boreal summer. J. Climate, 19, 14501460, https://doi.org/10.1175/JCLI3686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KanthaRao, B., and V. Rakesh, 2018: Observational evidence for the relationship between spring soil moisture and June rainfall over the Indian region. Theor. Appl. Climatol., 132, 835849, https://doi.org/10.1007/s00704-017-2116-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ke, Z., X. Jiang, and Z. Wang, 2019: Southeastern China boreal winter precipitation anomalies are dependent on intensity of El Niño. Sci. Rep., 9, 17410, https://doi.org/10.1038/s41598-019-53496-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9, 20362057, https://doi.org/10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., H. Liu, and J. Song, 2013: Further study of Yunnan drought during the 2009/2010 winter: Numerical simulation of impact of antecedent soil moisture (in Chinese). Climatic Environ. Res., 18, 551561, https://doi.org/10.3878/j.issn.1006-9585.2013.12057.

    • Search Google Scholar
    • Export Citation
  • Li, Z., T. Zhou, H. Chen, D. Ni, and R. Zhang, 2015: Modeling the effect of soil moisture variability on summer precipitation variability over East Asia. Int. J. Climatol., 35, 879887, https://doi.org/10.1002/joc.4023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lioubimtseva, E., and G. M. Henebry, 2009: Climate and environmental change in arid central Asia: Impacts, vulnerability and adaptations. J. Arid Environ., 73, 963977, https://doi.org/10.1016/j.jaridenv.2009.04.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., 2007: How ENSO impacts precipitation in southwest central Asia. Geophys. Res. Lett., 34, L16706, https://doi.org/10.1029/2007GL030078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp., www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.

    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Lüthi, P. L. Vidale, and C. Schär, 2008: The precipitation climate of central Asia—Intercomparison of observational and numerical data sources in a remote semiarid region. Int. J. Climatol., 28, 295314, https://doi.org/10.1002/joc.1532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2011: GPCC full data reanalysis version 6.0 at 1.0°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic. GPCC, accessed October 2020, https://doi.org/10.5676/DWD_GPCC/FD_M_V7_100.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Dool, H., J. Huang, and Y. Fan, 2003: Performance and analysis of the constructed analogue method applied to U.S. soil moisture applied over 1981–2001. J. Geophys. Res., 108, 8617, https://doi.org/10.1029/2002JD003114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Li, and Q. He, 2017: Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016). Adv. Atmos. Sci., 34, 12351248, https://doi.org/10.1007/s00376-017-7016-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., X. Luo, and J. Liu, 2020: How robust is the Asian precipitation–ENSO relationship during the industrial warming period (1901–2017)? J. Climate, 33, 27792792, https://doi.org/10.1175/JCLI-D-19-0630.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Kirtman, 2011: Caribbean Sea rainfall variability during the rainy season and relationship to the equatorial Pacific and tropical Atlantic SST. Climate Dyn., 37, 15331550, https://doi.org/10.1007/s00382-010-0927-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and Z. He, 2017: Two distinctive processes for abnormal spring to summer transition over the South China Sea. J. Climate, 30, 96659678, https://doi.org/10.1175/JCLI-D-17-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and Z. He, 2019: Northern tropical Atlantic warming in El Niño decaying spring: Impacts of El Niño amplitude. Geophys. Res. Lett., 46, 14 07214 081, https://doi.org/10.1029/2019GL085840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Z. Hu, and B. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., G. Liu, and P. Zhao, 2014: Contrasting Eurasian spring and summer climate anomalies associated with western and eastern Eurasian spring snow cover changes. J. Geophys. Res. Atmos., 119, 74107424, https://doi.org/10.1002/2014JD021764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., M. Y. Lin, and H. M. Sun, 2020: Impacts of different types of El Niño and La Niña on northern tropical Atlantic sea surface temperature. Climate Dyn., 54, 41474167, https://doi.org/10.1007/s00382-020-05220-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L. G., H. F. Zhou, L. Du, H. J. Yao, and H. B. Wang, 2015: Precipitation trends and variability from 1950 to 2000 in arid lands of central Asia. J. Arid Land, 7, 514526, https://doi.org/10.1007/s40333-015-0045-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., Z. Li, J.-Y. Yu, X. Hu, W. Dong, and S. He, 2018: El Niño–Southern Oscillation and its impact in the changing climate. Natl. Sci. Rev., 5, 840857, https://doi.org/10.1093/nsr/nwy046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Climate, 25, 77027722, https://doi.org/10.1175/JCLI-D-11-00576.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., W.-C. Wang, and J. Wei, 2008: Assessing land–atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J. Geophys. Res., 113, D17119, https://doi.org/10.1029/2008JD009807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, https://doi.org/10.1007/BF02973084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, X. J., J. Rao, and J. Y. Mao, 2019: The salient differences in China summer rainfall response to ENSO: Phases, intensities and flavors. Climate Res., 78, 5167, https://doi.org/10.3354/cr01560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., A. Huang, Y. Zhou, D. Huang, Q. Yang, Y. Ma, M. Li, and G. Wei, 2014: Impact of the middle and upper tropospheric cooling over central Asia on the summer rainfall in the Tarim Basin, China. J. Climate, 27, 47214732, https://doi.org/10.1175/JCLI-D-13-00456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., X. J. Yu, J. Q. Yao, and X. N. Dong, 2018: Evaluation of the subtropical westerly jet and its effects on the projected summer rainfall over central Asia using multi-CMIP5 models. Int. J. Climatol., 38, e1176e1189, https://doi.org/10.1002/joc.5443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., X. H. Fang, J. Y. Yu, and J. Zhu, 2014: Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys. Res. Lett., 41, 76517657, https://doi.org/10.1002/2014GL062125.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 694 0 0
Full Text Views 2510 1400 71
PDF Downloads 1336 316 28