The Effect of Explicit Convection on Climate Change in the West African Monsoon and Central West African Sahel Rainfall

Lawrence S. Jackson aSchool of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Lawrence S. Jackson in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8143-2777
,
John H. Marsham aSchool of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by John H. Marsham in
Current site
Google Scholar
PubMed
Close
,
Douglas J. Parker aSchool of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Douglas J. Parker in
Current site
Google Scholar
PubMed
Close
,
Declan L. Finney aSchool of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Declan L. Finney in
Current site
Google Scholar
PubMed
Close
,
Rory G. J. Fitzpatrick aSchool of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Rory G. J. Fitzpatrick in
Current site
Google Scholar
PubMed
Close
,
David P. Rowell bMet Office, Exeter, United Kingdom

Search for other papers by David P. Rowell in
Current site
Google Scholar
PubMed
Close
,
Rachel A. Stratton bMet Office, Exeter, United Kingdom

Search for other papers by Rachel A. Stratton in
Current site
Google Scholar
PubMed
Close
, and
Simon Tucker bMet Office, Exeter, United Kingdom

Search for other papers by Simon Tucker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The West African monsoon (WAM) is the dominant feature of West African climate providing the majority of annual rainfall. Projections of future rainfall over the West African Sahel are deeply uncertain, with a key reason likely to be moist convection, which is typically parameterized in global climate models. Here, we use a pan-African convection-permitting simulation (CP4), alongside a parameterized convection simulation (P25), to determine the key processes that underpin the effect of explicit convection on the climate change of the central West African Sahel (12°–17°N, 8°W–2°E). In current climate, CP4 affects WAM processes on multiple scales compared to P25. There are differences in the diurnal cycles of rainfall, moisture convergence, and atmospheric humidity. There are upscale impacts: the WAM penetrates farther north, there is greater humidity over the northern Sahel and the Saharan heat low regions, the subtropical subsidence rate over the Sahara is weaker, and ascent within the tropical rain belt is deeper. Under climate change, the WAM shifts northward and Hadley circulation weakens in P25 and CP4. The differences between P25 and CP4 persist, however, underpinned by process differences at the diurnal scale and large scale. Mean rainfall increases 17.1% in CP4 compared to 6.7% in P25 and there is greater weakening in tropical ascent and subtropical subsidence in CP4. These findings show the limitations of parameterized convection and demonstrate the value that explicit convection simulations can provide to climate modelers and climate policy decision makers.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lawrence S. Jackson, l.s.jackson@leeds.ac.uk

Abstract

The West African monsoon (WAM) is the dominant feature of West African climate providing the majority of annual rainfall. Projections of future rainfall over the West African Sahel are deeply uncertain, with a key reason likely to be moist convection, which is typically parameterized in global climate models. Here, we use a pan-African convection-permitting simulation (CP4), alongside a parameterized convection simulation (P25), to determine the key processes that underpin the effect of explicit convection on the climate change of the central West African Sahel (12°–17°N, 8°W–2°E). In current climate, CP4 affects WAM processes on multiple scales compared to P25. There are differences in the diurnal cycles of rainfall, moisture convergence, and atmospheric humidity. There are upscale impacts: the WAM penetrates farther north, there is greater humidity over the northern Sahel and the Saharan heat low regions, the subtropical subsidence rate over the Sahara is weaker, and ascent within the tropical rain belt is deeper. Under climate change, the WAM shifts northward and Hadley circulation weakens in P25 and CP4. The differences between P25 and CP4 persist, however, underpinned by process differences at the diurnal scale and large scale. Mean rainfall increases 17.1% in CP4 compared to 6.7% in P25 and there is greater weakening in tropical ascent and subtropical subsidence in CP4. These findings show the limitations of parameterized convection and demonstrate the value that explicit convection simulations can provide to climate modelers and climate policy decision makers.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lawrence S. Jackson, l.s.jackson@leeds.ac.uk

Supplementary Materials

    • Supplemental Materials (pdf 632 KB)
Save
  • Aranami, K., T. Davies, and N. Wood, 2015: A mass restoration scheme for limited-area models with semi-Lagrangian advection. Quart. J. Roy. Meteor. Soc., 141, 17951803, https://doi.org/10.1002/qj.2482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berthou, S., E. Kendon, D. P. Rowell, M. J. Roberts, S. O. Tucker, and R. A. Stratton, 2019a: Larger future intensification of rainfall in the West African Sahel in a convection-permitting model. Geophys. Res. Lett., 46, 13 29913 307, https://doi.org/10.1029/2019GL083544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berthou, S., D. P. Rowell, E. J. Kendon, M. J. Roberts, R. A. Stratton, J. A. Crook, and C. Wilcox, 2019b: Improved climatological precipitation characteristics over West Africa at convection-permitting scales. Climate Dyn., 53, 19912011, https://doi.org/10.1007/s00382-019-04759-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biasutti, M., 2019: Rainfall trends in the African Sahel: Characteristics, processes, and causes. Wiley Interdiscip. Rev.: Climate Change, 10, e591, https://doi.org/10.1002/wcc.591.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., A. H. Sobel, and S. J. Camargo, 2009: The role of the Sahara low in summertime Sahel rainfall variability and change in the CMIP3 models. J. Climate, 22, 57555771, https://doi.org/10.1175/2009JCLI2969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bickle, M. E., J. H. Marsham, A. N. Ross, D. P. Rowell, D. J. Parker, and C. M. Taylor, 2021: Understanding mechanisms for trends in Sahelian squall lines: Roles of thermodynamics and shear. Quart. J. Roy. Meteor. Soc., 147, 9831006, https://doi.org/10.1002/qj.3955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birch, C. E., J. H. Marsham, D. J. Parker, and C. M. Taylor, 2014a: The scale dependence and structure of convergence fields preceding the initiation of deep convection. Geophys. Res. Lett., 41, 47694776, https://doi.org/10.1002/2014GL060493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birch, C. E., D. J. Parker, J. H. Marsham, D. Copsey, and L. Garcia-Carreras, 2014b: A seamless assessment of the role of convection in the water cycle of the West African monsoon. J. Geophys. Res. Atmos., 119, 28902912, https://doi.org/10.1002/2013JD020887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bock, O., and Coauthors, 2011: The large-scale water cycle of the West African monsoon. Atmos. Sci. Lett., 12, 5157, https://doi.org/10.1002/asl.288.

  • Boko, M. , and Coauthors, 2007: Africa.Climate Change 2007: Impacts, Adaptation and Vulnerability. Cambridge University Press, 433467.

    • Search Google Scholar
    • Export Citation
  • Busby, J. W., K. H. Cook, E. K. Vizy, T. G. Smith, and M. Bekalo, 2014: Identifying hot spots of security vulnerability associated with climate change in Africa. Climatic Change, 124, 717731, https://doi.org/10.1007/s10584-014-1142-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 38033822, https://doi.org/10.1175/JCLI-D-12-00543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H. , and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker, Eds., Cambridge University Press, 12171308.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 1999: Generation of the African easterly jet and its role in determining West African precipitation. J. Climate, 12, 11651184, https://doi.org/10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and E. K. Vizy, 2015: Detection and analysis of an amplified warming of the Sahara desert. J. Climate, 28, 65606580, https://doi.org/10.1175/JCLI-D-14-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornforth, R., 2012: Overview of the West African monsoon 2011. Weather, 67, 5965, https://doi.org/10.1002/wea.1896.

  • Crook, J. A., C. Klein, S. Folwell, C. M. Taylor, D. J. Parker, R. Stratton, and T. Stein, 2019: Assessment of the representation of West African storm lifecycles in convection‐permitting simulations. Earth Space Sci., 6, 818835, https://doi.org/10.1029/2018EA000491.

    • Search Google Scholar
    • Export Citation
  • Davies, T., 2014: Lateral boundary conditions for limited area models. Quart. J. Roy. Meteor. Soc., 140, 185196, https://doi.org/10.1002/qj.2127.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Kauwe, M. G., C. M. Taylor, P. P. Harris, G. P. Weedon, and R. J. Ellis, 2013: Quantifying land surface temperature variability for two Sahelian mesoscale regions during the wet season. J. Hydrometeor., 14, 16051619, https://doi.org/10.1175/JHM-D-12-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, R., A. S. Daloz, D. J. Vimont, and M. Biasutti, 2017: Saharan heat low biases in CMIP5 models. J. Climate, 30, 28672884, https://doi.org/10.1175/JCLI-D-16-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, R., D. J. Vimont, and A. S. Daloz, 2018: The relationship between tropical precipitation biases and the Saharan heat low bias in CMIP5 models. Climate Dyn., 50, 37293744, https://doi.org/10.1007/s00382-017-3838-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dosio, A., R. G. Jones, C. Jack, C. Lennard, G. Nikulin, and B. Hewitson, 2019: What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Climate Dyn., 53, 58335858, https://doi.org/10.1007/s00382-019-04900-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., M. W. Moncrieff, and D. W. K. So, 1987: The two-dimensional dynamics of West African squall lines. Quart. J. Roy. Meteor. Soc., 113, 121146, https://doi.org/10.1002/qj.49711347508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., C. Flamant, C. Lavaysse, C. Kocha, and A. Saci, 2015: Water vapor–forced greenhouse warming over the Sahara desert and the recent recovery from the Sahelian drought. J. Climate, 28, 108123, https://doi.org/10.1175/JCLI-D-14-00039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2017: Exploring the convective grey zone with regional simulations of a cold air outbreak. Quart. J. Roy. Meteor. Soc., 143, 25372555, https://doi.org/10.1002/qj.3105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fink, A. H., D. G. Vincent, and V. Ermert, 2006: Rainfall types in the West African Sudanian zone during the summer monsoon 2002. Mon. Wea. Rev., 134, 21432164, https://doi.org/10.1175/MWR3182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finney, D. L., J. H. Marsham, D. P. Rowell, E. J. Kendon, S. O. Tucker, R. A. Stratton, and L. S. Jackson, 2020: Effects of explicit convection on future projections of mesoscale circulations, rainfall, and rainfall extremes over eastern Africa. J. Climate, 33, 27012718, https://doi.org/10.1175/JCLI-D-19-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzpatrick, R. G. J., and Coauthors, 2020: What drives the intensification of mesoscale convective systems over the West African Sahel under climate change? J. Climate, 33, 31513172, https://doi.org/10.1175/JCLI-D-19-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontaine, B., and N. Philippon, 2000: Seasonal evolution of boundary layer heat content in the West African monsoon from the NCEP/NCAR reanalysis (1968–1998). Int. J. Climatol., 20, 17771790, https://doi.org/10.1002/1097-0088(20001130)20:14<1777::AID-JOC568>3.0.CO;2-S.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Carreras, L., and Coauthors, 2015: The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer. J. Atmos. Sci., 72, 693713, https://doi.org/10.1175/JAS-D-13-0384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506, https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, N. C. G., R. Washington, and R. A. Stratton, 2018: Stronger local overturning in convective-permitting regional climate model improves simulation of the subtropical annual cycle. Geophys. Res. Lett., 45, 11 33411 342, https://doi.org/10.1029/2018GL079563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2019: ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 17 August 2021, https://doi.org/10.24381/cds.f17050d7.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Jackson, B., S. E. Nicholson, and D. Klotter, 2009: Mesoscale convective systems over western equatorial Africa and their relationship to large-scale circulation. Mon. Wea. Rev., 137, 12721294, https://doi.org/10.1175/2008MWR2525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, L. S., D. L. Finney, E. J. Kendon, J. H. Marsham, D. J. Parker, R. A. Stratton, L. Tomassini, and S. Tucker, 2020: The effect of explicit convection on couplings between rainfall, humidity, and ascent over Africa under climate change. J. Climate, 33, 83158337, https://doi.org/10.1175/JCLI-D-19-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 2003: Thermal low.Encyclopedia of Atmospheric Sciences, Academic Press, 22692273.

  • Kendon, E. J., R. A. Stratton, S. Tucker, J. H. Marsham, S. Berthou, D. P. Rowell, and C. A. Senior, 2019: Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nat. Commun., 10, 1794, https://doi.org/10.1038/s41467-019-09776-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, C., F. Nkrumah, C. M. Taylor, and E. A. Adefisan, 2021: Seasonality and trends of drivers of mesoscale convective systems in southern West Africa. J. Climate, 34, 7187, https://doi.org/10.1175/JCLI-D-20-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., C. Flamant, S. Janicot, D. J. Parker, J.-P. Lafore, B. Sultan, and J. Pelo, 2009: Seasonal evolution of the West African heat low: A climatological perspective. Climate Dyn., 33, 313330, https://doi.org/10.1007/s00382-009-0553-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lothon, M., F. Said, F. Louthou, and B. Campistron, 2008: Observation of the diurnal cycle in the low troposphere of West Africa. Mon. Wea. Rev., 136, 34773500, https://doi.org/10.1175/2008MWR2427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantsis, D. F., S. Sherwood, V. Dixit, H. Morrison, and G. Thompson, 2020: Mid-level clouds over the Sahara in a convection-permitting regional model. Climate Dyn., 54, 34253439, https://doi.org/10.1007/s00382-020-05188-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maranan, M., A. H. Fink, and P. Knippertz, 2018: Rainfall types over southern West Africa: Objective identification, climatology and synoptic environment. Quart. J. Roy. Meteor. Soc., 144, 16281648, https://doi.org/10.1002/qj.3345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., N. S. Dixon, L. Garcia-Carreras, G. M. S. Lister, D. J. Parker, P. Knippertz, and C. E. Birch, 2013: The role of moist convection in the West African monsoon system: Insights from continental-scale convection-permitting simulations. Geophys. Res. Lett., 40, 18431849, https://doi.org/10.1002/grl.50347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., D. J. Parker, M. C. Todd, J. R. Banks, H. E. Brindley, L. Garcia-Carreras, A. J. Roberts, and C. L. Ryder, 2016: The contrasting roles of water and dust in controlling daily variations in radiative heating of the summertime Saharan heat low. Atmos. Chem. Phys., 16, 35633575, https://doi.org/10.5194/acp-16-3563-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and C. D. Thorncroft, 2006: Intense convective systems in West Africa and their relationship to the African easterly jet. Quart. J. Roy. Meteor. Soc., 132, 163176, https://doi.org/10.1256/qj.05.55.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, https://doi.org/10.1038/nature08823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niang, I., O. C. Ruppel, M. A. Abdrabo, A. Essel, C. Lennard, J. Padgham, and P. Urquhart, 2014: Africa. Climate Change 2014: Impacts, Adaptation, and Vulnerability, V. R. Barros, Eds., Cambridge University Press, 11991265.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S. D., and K. I. Mohr, 2010: An analysis of the environments of intense convective systems in West Africa in 2003. Mon. Wea. Rev., 138, 37213739, https://doi.org/10.1175/2010MWR3321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2009: A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Climate Dyn., 32, 78, 1155–1171, https://doi.org/10.1007/s00382-008-0514-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2013: The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteor., 2013, 453521, https://doi.org/10.1155/2013/453521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., C. D. Thorncroft, R. R. Burton, and A. Diongue-Niang, 2005a: Analysis of the African easterly jet, using aircraft observations from the JET2000 experiment. Quart. J. Roy. Meteor. Soc., 131, 14611482, https://doi.org/10.1256/qj.03.189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and Coauthors, 2005b: The diurnal cycle of the West African monsoon circulation. Quart. J. Roy. Meteor. Soc., 131, 28392860, https://doi.org/10.1256/qj.04.52.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., P. Willetts, C. Birch, A. G. Turner, J. H. Marsham, C. M. Taylor, S. Kolusu, and G. M. Martin, 2016: The interaction of moist convection and mid-level dry air in the advance of the onset of the Indian monsoon. Quart. J. Roy. Meteor. Soc., 142, 22562272, https://doi.org/10.1002/qj.2815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, K. J., R. J. Hogan, R. P. Allan, G. M. S. Lister, and C. E. Holloway, 2010: Evaluation of the model representation of the evolution of convective systems using satellite observations of outgoing longwave radiation. J. Geophys. Res., 115, D20206, https://doi.org/10.1029/2010JD014265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, K. J., G. M. S. Lister, C. E. Birch, R. P. Allan, R. J. Hogan, and S. J. Woolnough, 2014: Modelling the diurnal cycle of tropical convection across the ‘grey zone’. Quart. J. Roy. Meteor. Soc., 140, 491499, https://doi.org/10.1002/qj.2145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., A. Gobiet, M. Suklitsch, M. H. Truhetz, N. K. Awan, K. Keuler, and G. Georgievski, 2013: Added value of convection permitting seasonal simulations. Climate Dyn., 41, 26552677, https://doi.org/10.1007/s00382-013-1744-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. Rasmussen, and G. Stephens, 2017: Challenges and advances in convection-permitting climate modelling. Bull. Amer. Meteor. Soc., 98, 10271030, https://doi.org/10.1175/BAMS-D-16-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Provod, M., J. H. Marsham, D. J. Parker, and C. E. Birch, 2016: A characterization of cold pools in the West African Sahel. Mon. Wea. Rev., 144, 19231934, https://doi.org/10.1175/MWR-D-15-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raj, J., H. K. Bangalath, and G. Stenchikov, 2019: West African monsoon: Current state and future projections in a high-resolution AGCM. Climate Dyn., 52, 64416461, https://doi.org/10.1007/s00382-018-4522-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 2003: The impact of Mediterranean SSTs on the Sahelian rainfall season. J. Climate, 16, 849862, https://doi.org/10.1175/1520-0442(2003)016<0849:TIOMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., C. A. Senior, M. Vellinga, and R. J. Graham, 2016: Can climate projection uncertainty be constrained over Africa using metrics of contemporary performance? Climatic Change, 134, 621633, https://doi.org/10.1007/s10584-015-1554-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., R. G. J. Fitzpatrick, L. S. Jackson, and G. Redmond, 2021: Understanding intermodel variability in future projections of a Sahelian storm proxy and southern Saharan warming. J. Climate, 34, 509525, https://doi.org/10.1175/JCLI-D-20-0382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and Coauthors, 2021: Convection-permitting regional climate change simulations for understanding future climate and informing decision-making in Africa. Bull. Amer. Meteor. Soc., 102, E1206E1223, https://doi.org/10.1175/BAMS-D-20-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., A. Giannini, M. Rojas, S. A. Rauscher, S. Bordoni, D. Singh, and S. J. Camargo, 2019: Monsoon responses to climate changes—Connecting past, present and future. Curr. Climate Change Rep., 5, 6379, https://doi.org/10.1007/s40641-019-00125-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheen, K., D. M. Smith, N. Dunstone, R. Eade, D. P. Rowell, and M. Vellinga, 2017: Skilful prediction of Sahel summer rainfall on inter-annual and multi-year time scales. Nat. Commun., 8, 14966, https://doi.org/10.1038/ncomms14966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shekhar, R., and W. R. Boos, 2017: Weakening and shifting of the Saharan shallow meridional circulation during wet years of the West African monsoon. J. Climate, 30, 73997422, https://doi.org/10.1175/JCLI-D-16-0696.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 3742, https://doi.org/10.1038/nature12829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460, https://doi.org/10.1002/qj.49711649210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, T. H. M., and Coauthors, 2019: An evaluation of clouds and precipitation in convection-permitting forecasts for South Africa. Wea. Forecasting, 34, 233254, https://doi.org/10.1175/WAF-D-18-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stratton, R., and Coauthors, 2018: A pan-Africa convection-permitting regional climate simulation with the Met Office Unified Model: CP4-Africa. J. Climate, 31, 34853508, https://doi.org/10.1175/JCLI-D-17-0503.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., C. E. Birch, D. J. Parker, N. Dixon, F. Guichard, G. Nikulin, and G. M. S. Lister, 2013: Modeling soil moisture-precipitation feedback in the Sahel: Importance of spatial scale versus convective parameterisation. Geophys. Res. Lett., 40, 62136218, https://doi.org/10.1002/2013GL058511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., and Coauthors, 2017: Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature, 544, 475478, https://doi.org/10.1038/nature22069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., H. Nguyen, C. Zhang, and P. Peyrillé, 2011: Annual cycle of the West African monsoon: Regional circulations and associated water vapour transport. Quart. J. Roy. Meteor. Soc., 137, 129147, https://doi.org/10.1002/qj.728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trzeciak, T. M., L. Garcia-Carreras, and J. H. Marsham, 2017: Cross-Saharan transport of water vapor via recycled cold pool outflows from moist convection. Geophys. Res. Lett., 44, 15541563, https://doi.org/10.1002/2016GL072108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2018: Mesoscale convective systems and nocturnal rainfall over the West African Sahel: Role of the inter-tropical front. Climate Dyn., 50, 587614, https://doi.org/10.1007/s00382-017-3628-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2019: Understanding the summertime diurnal cycle of precipitation over sub-Saharan West Africa: Regions with daytime rainfall peaks in the absence of significant topographic features. Climate Dyn., 52, 29032922, https://doi.org/10.1007/s00382-018-4315-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., K. H. Cook, J. Cretat, and N. Neupane, 2013: Projections of a wetter Sahel in the twenty-first century from global and regional models. J. Climate, 26, 46644687, https://doi.org/10.1175/JCLI-D-12-00533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D. N., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 14871520, https://doi.org/10.5194/gmd-10-1487-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D. N., and Coauthors, 2019: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev., 12, 19091963, https://doi.org/10.5194/gmd-2017-291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, N., L. Zhou, Y. Dai, G. Xia, and W. Hua, 2017: Observational evidence for desert amplification using multiple satellite datasets. Sci. Rep., 7, 2043, https://doi.org/10.1038/s41598-017-02064-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 20932107, https://doi.org/10.1002/qj.333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N., and Coauthors, 2014: An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quart. J. Roy. Meteor. Soc., 140, 15051520, https://doi.org/10.1002/qj.2235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodhams, B. J., C. E. Birch, J. H. Marsham, C. L. Bain, N. M. Roberts, and D. F. A. Boyd, 2018: What is the added value of a convection-permitting model for forecasting extreme rainfall over tropical East Africa? Mon. Wea. Rev., 146, 27572780, https://doi.org/10.1175/MWR-D-17-0396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., K. H. Cook, and E. K. Vizy, 2016a: The diurnal cycle of warm season rainfall over West Africa. Part I: Observational analysis. J. Climate, 29, 84238437, https://doi.org/10.1175/JCLI-D-15-0874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., K. H. Cook, and E. K. Vizy, 2016b: The diurnal cycle of warm season rainfall over West Africa. Part II: Convection-permitting simulations. J. Climate, 29, 84398454, https://doi.org/10.1175/JCLI-D-15-0875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., 2016: Desert amplification in a warming climate. Sci. Rep., 6, 31065, https://doi.org/10.1038/srep31065.

  • Zhou, L., H. Chen, and Y. Dai, 2015: Stronger warming amplification over drier ecoregions observed since 1979. Environ. Res. Lett., 10, 064012, https://doi.org/10.1088/1748-9326/10/6/064012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 781 0 0
Full Text Views 1620 978 64
PDF Downloads 772 197 20