Multidecadal Sea Level Rise in the Southeast Indian Ocean: The Role of Ocean Salinity Change

Ying Lu aChinese Academy of Sciences (CAS) Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology and Center for Ocean Mega-Science, Qingdao, China
bUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Ying Lu in
Current site
Google Scholar
PubMed
Close
,
Yuanlong Li aChinese Academy of Sciences (CAS) Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology and Center for Ocean Mega-Science, Qingdao, China
cFunction Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
dCAS Center for Excellence in Quaternary Science and Global Change, Xi’an, China

Search for other papers by Yuanlong Li in
Current site
Google Scholar
PubMed
Close
,
Jing Duan aChinese Academy of Sciences (CAS) Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology and Center for Ocean Mega-Science, Qingdao, China
cFunction Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Jing Duan in
Current site
Google Scholar
PubMed
Close
,
Pengfei Lin eLASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Pengfei Lin in
Current site
Google Scholar
PubMed
Close
, and
Fan Wang aChinese Academy of Sciences (CAS) Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology and Center for Ocean Mega-Science, Qingdao, China
bUniversity of Chinese Academy of Sciences, Beijing, China
cFunction Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Fan Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Regional sea level rise in the southeast Indian Ocean (SEIO) exerts growing threats to the surrounding Australian and Indonesian coasts, but the mechanisms of sea level rise have not been firmly established. By analyzing observational datasets and model results, this study investigates multidecadal steric sea level (SSL) rise of the SEIO since the mid-twentieth century, underscoring a significant role of ocean salinity change. The average SSL rising rate from 1960 through 2018 was 7.4 ± 2.4 mm decade−1, and contributions of the halosteric and thermosteric components were ∼42% and ∼58%, respectively. The notable salinity effect arises primarily from a persistent subsurface freshening trend at 400–1000 m. Further insights are gained through the decomposition of temperature and salinity changes into the heaving (vertical displacements of isopycnal surfaces) and spicing (density-compensated temperature and salinity change) modes. The subsurface freshening trend since 1960 is mainly attributed to the spicing mode, reflecting property modifications of the Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) in the southern Indian Ocean. Also noteworthy is a dramatic acceleration of SSL rise (20.3 ± 7.0 mm decade−1) since ∼1990, which was predominantly induced by the thermosteric component (16.3 ± 5.5 mm decade−1) associated with the heaving mode. Enhanced Ekman downwelling by surface winds and radiation forcing linked to global greenhouse gas warming mutually caused the depression of isopycnal surfaces, leading to the accelerated SSL rise through thermosteric effect. This study highlights the complexity of regional sea level rise in a rapidly changing climate, in which the role of ocean salinity is vital and time-varying.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanlong Li, liyuanlong@qdio.ac.cn

Abstract

Regional sea level rise in the southeast Indian Ocean (SEIO) exerts growing threats to the surrounding Australian and Indonesian coasts, but the mechanisms of sea level rise have not been firmly established. By analyzing observational datasets and model results, this study investigates multidecadal steric sea level (SSL) rise of the SEIO since the mid-twentieth century, underscoring a significant role of ocean salinity change. The average SSL rising rate from 1960 through 2018 was 7.4 ± 2.4 mm decade−1, and contributions of the halosteric and thermosteric components were ∼42% and ∼58%, respectively. The notable salinity effect arises primarily from a persistent subsurface freshening trend at 400–1000 m. Further insights are gained through the decomposition of temperature and salinity changes into the heaving (vertical displacements of isopycnal surfaces) and spicing (density-compensated temperature and salinity change) modes. The subsurface freshening trend since 1960 is mainly attributed to the spicing mode, reflecting property modifications of the Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) in the southern Indian Ocean. Also noteworthy is a dramatic acceleration of SSL rise (20.3 ± 7.0 mm decade−1) since ∼1990, which was predominantly induced by the thermosteric component (16.3 ± 5.5 mm decade−1) associated with the heaving mode. Enhanced Ekman downwelling by surface winds and radiation forcing linked to global greenhouse gas warming mutually caused the depression of isopycnal surfaces, leading to the accelerated SSL rise through thermosteric effect. This study highlights the complexity of regional sea level rise in a rapidly changing climate, in which the role of ocean salinity is vital and time-varying.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanlong Li, liyuanlong@qdio.ac.cn

Supplementary Materials

    • Supplemental Materials (pdf 1.66 MB)
Save
  • Ablain, M., A. Cazenave, G. Valladeau, and S. Guinehut, 2009: A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Sci., 5, 193201, https://doi.org/10.5194/os-5-193-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., S. Levitus, and T. P. Boyer, 2002: Steric sea level variations during 1957–1994: Importance of salinity. J. Geophys. Res., 107, 8013, https://doi.org/10.1029/2001JC000964.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF Ocean Reanalysis System ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banks, H. T., R. A. Wood, J. M. Gregory, T. C. Johns, and G. S. Jones, 2000: Are observed decadal changes in intermediate water masses a signature of anthropogenic climate change? Geophys. Res. Lett., 27, 29612964, https://doi.org/10.1029/2000GL011601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and T. J. McDougall, 1994: Diagnosing climate change and ocean ventilation using hydrographic data. J. Phys. Oceanogr., 24, 11371152, https://doi.org/10.1175/1520-0485(1994)024<1137:DCCAOV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and T. J. McDougall, 2000: Decadal changes along an Indian Ocean section at 32°S and their interpretation. J. Phys. Oceanogr., 30, 12071222, https://doi.org/10.1175/1520-0485(2000)030<1207:DCAAIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cazenave, A., and W. Llovel, 2010: Contemporary sea level rise. Annu. Rev. Mar. Sci., 2, 145173, https://doi.org/10.1146/annurev-marine-120308-081105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., G. Wang, Y. Yan, and F. Luo, 2021: Projected sea level rise on the continental shelves of the China seas and the dominance of mass contribution. Environ. Res. Lett., 16, 064040, https://doi.org/10.1088/1748-9326/abfdea.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and Coauthors, 2017: The increasing rate of global mean sea-level rise during 1993–2014. Nat. Climate Change, 7, 492495, https://doi.org/10.1038/nclimate3325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., and J. Zhu, 2016: Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variations. J. Climate, 29, 53935416, https://doi.org/10.1175/JCLI-D-15-0730.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., and Coauthors, 2020: Improved estimates of changes in upper ocean salinity and the hydrological cycle. J. Climate, 33, 10 35710 381, https://doi.org/10.1175/JCLI-D-20-0366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, J. A., and Coauthors, 2001: Change in sea level. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 641–693.

  • Church, J. A., and Coauthors, 2013: Sea level change. Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1137–1216.

  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137 (654), 128, https://doi.org/10.1002/qj.776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, B. C., 2001: Sea level change in the era of the recording tide gauge. Sea Level Rise: History and Consequences, B. C. Douglas, M. S. Kearney, and S. P. Leatherman, Eds., Academic Press, 37–64, https://doi.org/10.1016/S0074-6142(01)80006-1.

    • Crossref
    • Export Citation
  • Du, Y., Y. Zhang, M. Feng, T. Wang, N. Zhang, and S. Wijffels, 2015: Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s. Sci. Rep., 5, 16050, https://doi.org/10.1038/srep16050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., Y. Zhang, and J. Shi, 2019: Relationship between sea surface salinity and ocean circulation and climate change. Sci. China Earth Sci., 62, 771782, https://doi.org/10.1007/s11430-018-9276-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., 2015: Ocean salinity and the global water cycle. Oceanography, 28, 2031, https://doi.org/10.5670/oceanog.2015.03.

  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, https://doi.org/10.1175/2010JCLI3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, https://doi.org/10.1126/science.1212222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and P. J. Gleckler, 2014: Long-term sea-level change revisited: The role of salinity. Environ. Res. Lett., 9, 114017, https://doi.org/10.1088/1748-9326/9/11/114017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., G. Meyers, A. Pearce, and S. Wijffels, 2003: Annual and interannual variations of the Leeuwin Current at 32°S. J. Geophys. Res., 108, 3355, https://doi.org/10.1029/2002JC001763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., A. Biastoch, C. Böning, N. Caputi, and G. Meyers, 2008: Seasonal and interannual variations of upper ocean heat balance off the west coast of Australia. J. Geophys. Res., 113, C12025, https://doi.org/10.1029/2008JC004908.

    • Search Google Scholar
    • Export Citation
  • Feng, M., J. Benthuysen, N. Zhang, and D. Slawinski, 2015a: Freshening anomalies in the Indonesian Throughflow and impacts on the Leeuwin Current during 2010–2011. Geophys. Res. Lett., 42, 85558562, https://doi.org/10.1002/2015GL065848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., and Coauthors, 2015b: Decadal increase in Ningaloo Niño since the late 1990s. Geophys. Res. Lett., 42, 104112, https://doi.org/10.1002/2014GL062509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frederikse, T., and Coauthors, 2020: The causes of sea-level rise since 1900. Nature, 584, 393397, https://doi.org/10.1038/s41586-020-2591-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., and Coauthors, 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Climate, 28, 862886, https://doi.org/10.1175/JCLI-D-14-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., E. M. Fischer, and N. Gruber, 2018: Marine heatwaves under global warming. Nature, 560, 360364, https://doi.org/10.1038/s41586-018-0383-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giese, B. S., and S. Ray, 2011: El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J. Geophys. Res., 116, C02024, https://doi.org/10.1029/2010JC006695.

    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and J. A. Lowe, 2000: Predictions of global and regional sea-level rise using AOGCMs with and without flux adjustment. Geophys. Res. Lett., 27, 30693072, https://doi.org/10.1029/1999GL011228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., Y. Li, F. Wang, Y. Wei, and Z. Rong, 2020a: Processes controlling sea surface temperature variability of Ningaloo Niño. J. Climate, 33, 43694389, https://doi.org/10.1175/JCLI-D-19-0698.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., Y. Li, F. Wang, Y. Wei, and Q. Xia, 2020b: Importance of resolving mesoscale eddies in the model simulation of Ningaloo Niño. Geophys. Res. Lett., 47, e2020GL087998, https://doi.org/10.1029/2020GL087998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., Y. Li, F. Wang, and Y. Wei, 2021: Ocean salinity aspects of the Ningaloo Niño. J. Climate, 34, 61416161, https://doi.org/10.1175/JCLI-D-20-0890.1.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2016: Warming of the global ocean: Spatial structure and water-mass trends. J. Climate, 29, 49494963, https://doi.org/10.1175/JCLI-D-15-0607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, B. D., and Coauthors, 2020: Investigating the acceleration of regional sea level rise during the satellite altimeter era. Geophys. Res. Lett., 47, e2019GL086528, https://doi.org/10.1029/2019GL086528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and J. P. McCreary, 2001: Modeling salinity distributions in the Indian Ocean. J. Geophys. Res., 106, 859877, https://doi.org/10.1029/2000JC000316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2010: Patterns of Indian Ocean sea-level change in a warming climate. Nat. Geosci., 3, 546550, https://doi.org/10.1038/ngeo901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2014: Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Climate Dyn., 43, 13571379, https://doi.org/10.1007/s00382-013-1951-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., D. Stammer, G. A. Meehl, A. Hu, F. Sienz, and L. Zhang, 2018: Multi-decadal trend and decadal variability of the regional sea level over the Indian Ocean since the 1960s: Roles of climate modes and external forcing. Climate, 6, 51, https://doi.org/10.3390/cli6020051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 373–386.

    • Crossref
    • Export Citation
  • Haumann, F. A., N. Gruber, M. Münnich, I. Frenger, and S. Kern, 2016: Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 537, 8992, https://doi.org/10.1038/nature19101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., Y. Du, T. Qu, Y. Zhang, and W. Cai, 2020: Variability of the Subantarctic Mode Water volume in the South Indian Ocean during 2004–2018. Geophys. Res. Lett., 47, e2020GL087830, https://doi.org/10.1029/2020GL087830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and J. Sprintall, 2016: Interannual variability of the Indonesian Throughflow: The salinity effect. J. Geophys. Res. Oceans, 121, 25962615, https://doi.org/10.1002/2015JC011495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and Coauthors, 2019: Interannual to decadal variability of upper ocean salinity in the southern Indian Ocean and the role of the Indonesian Throughflow. J. Climate, 32, 64036421, https://doi.org/10.1175/JCLI-D-19-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., W. Zhuang, X. Yan, and Z. Wu, 2020: Impacts of the upper-ocean salinity variations on the decadal sea level change in the southeast Indian Ocean during the Argo era. Acta Oceanol. Sin., 39, 110, https://doi.org/10.1007/s13131-020-1574-4.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2020: Heaving, Stretching and Spicing Modes. Springer, 399 pp., https://doi.org/10.1007/978-981-15-2941-2.

    • Crossref
    • Export Citation
  • Ishii, M., Y. Fukuda, S. Hirahara, S. Yasui, T. Suzuki, and K. Sato, 2017: Accuracy of global upper ocean heat content estimation expected from present observational data sets. SOLA, 13, 163167, https://doi.org/10.2151/sola.2017-030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, F., L. Wu, J. Lan, and B. Qiu, 2011: Interannual modulation of eddy kinetic energy in the southeast Indian Ocean by Southern Annular Mode. J. Geophys. Res., 116, C02029, https://doi.org/10.1029/2010JC006699.

    • Search Google Scholar
    • Export Citation
  • Jyoti, J., P. Swapna, R. Krishnan, and C. V. Naidu, 2019: Pacific modulation of accelerated south Indian Ocean sea level rise during the early 21st century. Climate Dyn., 53, 44134432, https://doi.org/10.1007/s00382-019-04795-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and Coauthors, 2013: Near-term climate change: Projections and predictability. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 953–1028.

  • Koch-Larrouy, A., R. Morrow, T. Penduff, and M. Juza, 2010: Origin and mechanism of Subantarctic Mode Water formation and transformation in the southern Indian Ocean. Ocean Dyn., 60, 563583, https://doi.org/10.1007/s10236-010-0276-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köhl, A., 2014: Detecting processes contributing to interannual halosteric and thermosteric sea level variability. J. Climate, 27, 24172426, https://doi.org/10.1175/JCLI-D-13-00412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in mode rate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. K., W. Park, M. Baringer, A. Gordon, B. Huber, and Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci., 8, 445449, https://doi.org/10.1038/ngeo2438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., I. Fukumori, and B. Tang, 2004: Temperature advection: Internal versus external processes. J. Phys. Oceanogr., 34, 19361944, https://doi.org/10.1175/1520-0485(2004)034<1936:TAIVEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, H. E. Garcia, and R. A. Locarnini, 2005: Linear trends of zonally averaged thermosteric, halosteric, and total steric sea level for individual ocean basins and the world ocean, (1955–1959)–(1994–1998). Geophys. Res. Lett., 32, L16601, https://doi.org/10.1029/2005GL023761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and F. Wang, 2015: Thermocline spiciness variations in the tropical Indian Ocean observed during 2003–2014. Deep-Sea Res. I, 97, 5266, https://doi.org/10.1016/j.dsr.2014.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, and L. Zhang, 2017: Enhanced decadal warming of the southeast Indian Ocean during the recent global surface warming slowdown. Geophys. Res. Lett., 44, 98769884, https://doi.org/10.1002/2017GL075050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, L. Zhang, and F. Wang, 2019: Decadal SST variability in the southeast Indian Ocean and its impact on regional climate. J. Climate, 32, 62996318, https://doi.org/10.1175/JCLI-D-19-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and Coauthors, 2020: Eddy-resolving simulation of CAS-LICOM3 for phase 2 of the Ocean Model Intercomparison Project. Adv. Atmos. Sci., 37, 10671080, https://doi.org/10.1007/s00376-020-0057-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., Z. Yu, H. Liu, Y. Yu, and J. Ma, 2020: LICOM model datasets for the CMIP6 Ocean Model Intercomparison Project. Adv. Atmos. Sci., 37, 239249, https://doi.org/10.1007/s00376-019-9208-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., and T. Lee, 2015: Importance and origin of halosteric contribution to sea level change in the southeast Indian Ocean during 2005–2013. Geophys. Res. Lett., 42, 11481157, https://doi.org/10.1002/2014GL062611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., S. Guinehut, and A. Cazenave, 2010: Regional and interannual variability in sea level over 2002–2009 based on satellite altimetry, Argo float data and GRACE ocean mass. Ocean Dyn., 60, 11931204, https://doi.org/10.1007/s10236-010-0324-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., I. Fukumori, and B. Meyssignac, 2013: Depth-dependent temperature change contributions to global mean thermosteric sea level rise from 1960 to 2010. Global Planet. Change, 101, 113118, https://doi.org/10.1016/j.gloplacha.2012.12.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., J. K. Willis, F. W. Landerer, and I. Fukumori, 2014: Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nat. Climate Change, 4, 10311035, https://doi.org/10.1038/nclimate2387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorbacher, K., S. J. Marsland, J. A. Church, S. M. Griffies, and D. Stammer, 2012: Rapid barotropic sea level rise from ice sheet melting. J. Geophys. Res., 117, C06003, https://doi.org/10.1029/2011JC007733.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., and L. D. Talley, 1982: The subpolar mode water of the North Atlantic Ocean. J. Phys. Oceanogr., 12, 11691188, https://doi.org/10.1175/1520-0485(1982)012<1169:TSMWOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., P. K. Kundu, and R. L. Molinari, 1993: A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog. Oceanogr., 31, 181244, https://doi.org/10.1016/0079-6611(93)90002-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menezes, V. V., H. E. Phillips, A. Schiller, C. M. Domingues, and N. L. Bindoff, 2013: Salinity dominance on the Indian Ocean Eastern Gyral Current. Geophys. Res. Lett., 40, 57165721, https://doi.org/10.1002/2013GL057887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., P. R. Thompson, and M. Lander, 2012: Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys. Res. Lett., 39, L13602, https://doi.org/10.1029/2012GL052032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L., and B. C. Douglas, 2004: Mass and volume contributions to twentieth-century global sea level rise. Nature, 428, 406409, https://doi.org/10.1038/nature02309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyama, T., J. P. McCreary, T. G. Jensen, S. Godfrey, and A. Ishida, 2003: Structure and dynamics of the Indian-Ocean cross-equatorial cell. Deep-Sea Res., 50, 20232047, https://doi.org/10.1016/S0967-0645(03)00044-4.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 2003: Ocean freshening, sea level rising. Science, 300, 20412043, https://doi.org/10.1126/science.1085534.

  • Nagura, M., and S. Kouketsu, 2018: Spiciness anomalies in the upper south Indian Ocean. J. Phys. Oceanogr., 48, 20812101, https://doi.org/10.1175/JPO-D-18-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, R. J., and A. Cazenave, 2010: Sea-level rise and its impacts on coastal zones. Science, 328, 15171520, https://doi.org/10.1126/science.1185782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nidheesh, A. G., M. Lengaigne, J. Vialard, A. S. Unnikrishnan, and H. Dayan, 2013: Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Climate Dyn., 41, 381402, https://doi.org/10.1007/s00382-012-1463-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oppenheimer, M., and Coauthors, 2019: Sea level rise and implications for low lying islands, coasts and communities. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H. O. Pörtner et al., Eds., Cambridge University Press, 169 pp.

  • Pearce, A. F., and M. Feng, 2013: The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst., 111–112, 139156, https://doi.org/10.1016/j.jmarsys.2012.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2012: Multidecadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. J. Phys. Oceanogr., 42, 193206, https://doi.org/10.1175/JPO-D-11-061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., 2018: The global influence of localized dynamics in the Southern Ocean. Nature, 558, 209218, https://doi.org/10.1038/s41586-018-0182-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity and steric height in the global ocean from the Argo program. Prog. Oceanogr., 82, 81100, https://doi.org/10.1016/j.pocean.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., N. Wienders, K. Speer, and R. Morrow, 2006: Formation of Subantarctic Mode Water in the southeastern Indian Ocean. Ocean Dyn., 56, 525542, https://doi.org/10.1007/s10236-005-0054-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., and G. C. Johnson, 2012: Multidecadal warming and shoaling of Antarctic intermediate water. J. Climate, 25, 207221, https://doi.org/10.1175/JCLI-D-11-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., M. Dengler, and R. Schoenefeldt, 2002: The shallow overturning circulation of the Indian Ocean. Prog. Oceanogr., 53, 57103, https://doi.org/10.1016/S0079-6611(02)00039-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S. P. Xie, and J. P. Mccreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slangen, A. B. A., and Coauthors, 2017: A review of recent updates of sea-level projections at global and regional scales. Surv. Geophys., 38, 385406, https://doi.org/10.1007/s10712-016-9374-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and A. Révelard, 2014: The Indonesian Throughflow response to Indo‐Pacific climate variability. J. Geophys. Res. Oceans, 119, 11611175, https://doi.org/10.1002/2013JC009533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., and S. Hüttemann, 2008: Response of regional sea level to atmospheric pressure loading in a climate change scenario. J. Climate, 21, 20932101, https://doi.org/10.1175/2007JCLI1803.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., A. Cazenave, R. M. Ponte, and M. E. Tamisiea, 2013: Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci., 5, 2146, https://doi.org/10.1146/annurev-marine-121211-172406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1962: On the cause of the temperature–salinity curve in the ocean. Proc. Natl. Acad. Sci. USA, 48, 764766, https://doi.org/10.1073/pnas.48.5.764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., S. T. Gille, J. C. Fyfe, and N. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci., 11, 836841, https://doi.org/10.1038/s41561-018-0226-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Vinogradov, S. V., R. M. Ponte, P. Heimbach, and C. Wunsch, 2008: The mean seasonal cycle in sea level estimated from a data-constrained general circulation model. J. Geophys. Res., 11, C03032, https://doi.org/10.1029/2007JC004496.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S., and G. Meyers, 2004: An intersection of oceanic waveguides: Variability in the Indonesian Throughflow region. J. Phys. Oceanogr., 34, 12321253, https://doi.org/10.1175/1520-0485(2004)034<1232:AIOOWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, J. K., D. P. Chambers, and R. S. Nerem, 2008: Assessing the globally averaged sea level budget on seasonal to interannual timescales. J. Geophys. Res., 113, C06015, https://doi.org/10.1029/2007JC004517.

    • Search Google Scholar
    • Export Citation
  • Willis, J. K., D. P. Chambers, C. Y. Kuo, and C. K. Shum, 2015: Global sea level rise: Recent progress and challenges for the decade to come. Oceanography, 23, 2635, https://doi.org/10.5670/oceanog.2010.03.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., N. L. Bindoff, and J. A. Church, 1999: Large-scale freshening of intermediate waters in the Pacific and Indian Oceans. Nature, 400, 440443, https://doi.org/10.1038/22733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodworth, P., J. M. Gregory, and R. J. Nicholls, 2004: Long term sea level changes and their impacts. The Sea, A. R. Robinson and K. Brink, Eds., Harvard University Press, 717–752.

  • Zhang, Y., Y. Du, T. Qu, Y. Hong, C. M. Domingues, and M. Feng, 2021: Changes in the Subantarctic Mode Water properties and spiciness in the southern Indian Ocean based on Argo observations. J. Phys. Oceanogr., 51, 22032221, https://doi.org/10.1175/JPO-D-20-0254.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 525 0 0
Full Text Views 1920 1166 53
PDF Downloads 1019 196 12