Attribution of Dry and Wet Climatic Changes over Central Asia

Yu Ren aCollege of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Yu Ren in
Current site
Google Scholar
PubMed
Close
,
Haipeng Yu bKey Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China

Search for other papers by Haipeng Yu in
Current site
Google Scholar
PubMed
Close
,
Chenxi Liu aCollege of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Chenxi Liu in
Current site
Google Scholar
PubMed
Close
,
Yongli He aCollege of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Yongli He in
Current site
Google Scholar
PubMed
Close
,
Jianping Huang cCollaborative Innovation Center for Western Ecological Safety, Lanzhou, China
aCollege of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Jianping Huang in
Current site
Google Scholar
PubMed
Close
,
Lixia Zhang dLASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Lixia Zhang in
Current site
Google Scholar
PubMed
Close
,
Huancui Hu eAtmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Huancui Hu in
Current site
Google Scholar
PubMed
Close
,
Qiang Zhang fKey Open Laboratory of Arid Climate Change and Disaster Reduction of CMA, Key Laboratory of Arid Climate Change and Reducing Disaster of Gansu Province, Institute of Arid Meteorology, China Meteorological Administration, Lanzhou, China

Search for other papers by Qiang Zhang in
Current site
Google Scholar
PubMed
Close
,
Siyu Chen aCollege of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Siyu Chen in
Current site
Google Scholar
PubMed
Close
,
Xiaoyue Liu aCollege of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Xiaoyue Liu in
Current site
Google Scholar
PubMed
Close
,
Meng Zhang gDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China

Search for other papers by Meng Zhang in
Current site
Google Scholar
PubMed
Close
,
Yun Wei aCollege of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Yun Wei in
Current site
Google Scholar
PubMed
Close
,
Yaoxian Yan bKey Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China

Search for other papers by Yaoxian Yan in
Current site
Google Scholar
PubMed
Close
,
Weiwei Fan bKey Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China

Search for other papers by Weiwei Fan in
Current site
Google Scholar
PubMed
Close
, and
Jie Zhou aCollege of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Jie Zhou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Central Asia (CA; 35°–55°N, 55°–90°E) has been experiencing a significant warming trend during the past five decades, which has been accompanied by intensified local hydrological changes. Accurate identification of variations in hydroclimatic conditions and understanding the driving mechanisms are of great importance for water resource management. Here, we attempted to quantify dry/wet variations by using precipitation minus evapotranspiration (P − E) and attributed the variations based on the atmosphere and surface water balances. Our results indicated that the dry season became drier while the wet season became wetter in CA for 1982–2019. The land surface water budget revealed precipitation (96.84%) and vapor pressure deficit (2.26%) as the primary contributing factors for the wet season. For the dry season, precipitation (95.43%), net radiation (3.51%), and vapor pressure deficit (−2.64%) were dominant factors. From the perspective of the atmospheric water budget, net inflow moisture flux was enhanced by a rate of 72.85 kg m−1 s−1 in the wet season, which was mainly transported from midwestern Eurasia. The increase in precipitation induced by the external cycle was 11.93 mm (6 months)−1. In contrast, the drying trend during the dry season was measured by a decrease in the net inflow moisture flux (74.41 kg m−1 s−1) and reduced external moisture from midwestern Eurasia. An increase in precipitation during the dry season can be attributed to an enhancement in local evapotranspiration, accompanied by a 4.69% increase in the recycling ratio. The compounding enhancements between wet and dry seasons ultimately contribute to an increasing frequency of both droughts and floods.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Haipeng Yu, yuhp@lzb.ac.cn

Abstract

Central Asia (CA; 35°–55°N, 55°–90°E) has been experiencing a significant warming trend during the past five decades, which has been accompanied by intensified local hydrological changes. Accurate identification of variations in hydroclimatic conditions and understanding the driving mechanisms are of great importance for water resource management. Here, we attempted to quantify dry/wet variations by using precipitation minus evapotranspiration (P − E) and attributed the variations based on the atmosphere and surface water balances. Our results indicated that the dry season became drier while the wet season became wetter in CA for 1982–2019. The land surface water budget revealed precipitation (96.84%) and vapor pressure deficit (2.26%) as the primary contributing factors for the wet season. For the dry season, precipitation (95.43%), net radiation (3.51%), and vapor pressure deficit (−2.64%) were dominant factors. From the perspective of the atmospheric water budget, net inflow moisture flux was enhanced by a rate of 72.85 kg m−1 s−1 in the wet season, which was mainly transported from midwestern Eurasia. The increase in precipitation induced by the external cycle was 11.93 mm (6 months)−1. In contrast, the drying trend during the dry season was measured by a decrease in the net inflow moisture flux (74.41 kg m−1 s−1) and reduced external moisture from midwestern Eurasia. An increase in precipitation during the dry season can be attributed to an enhancement in local evapotranspiration, accompanied by a 4.69% increase in the recycling ratio. The compounding enhancements between wet and dry seasons ultimately contribute to an increasing frequency of both droughts and floods.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Haipeng Yu, yuhp@lzb.ac.cn
Save
  • Abid, M. A., M. Ashfaq, F. Kucharski, K. J. Evans, and M. Almazroui, 2020: Tropical Indian Ocean mediates ENSO influence over central southwest Asia during the wet season. Geophys. Res. Lett., 47, e2020GL08930, https://doi.org/10.1029/2020GL089308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 174 pp.

    • Search Google Scholar
    • Export Citation
  • Aralova, D., J. Kariyeva, T. Khujanazarov, and K. Toderich, 2018: Drought variability and land degradation in central Asia: Assessment using remote sensing data and drought indices. Vegetation of Central Asia and Environs, D. Egamberdieva and M. Öztürk, Eds., Springer, 1547, https://doi.org/10.1007/978-3-319-99728-5_2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., and M. K. Tippett, 2008: Variability and predictability of central Asia river flows: Antecedent winter precipitation and large-scale teleconnections. J. Hydrometeor., 9, 13341349, https://doi.org/10.1175/2008JHM976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., H. Cullen, and B. Lyon, 2002: Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J. Climate, 15, 697700, https://doi.org/10.1175/1520-0442(2002)015<0697:DICASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., B. Zaitchik, S. Paz, E. Black, J. Evans, and A. Hoell, 2016: A review of drought in the Middle East and Southwest Asia. J. Climate, 29, 85478574, https://doi.org/10.1175/JCLI-D-13-00692.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, https://doi.org/10.5194/essd-5-71-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bisselink, B., and A. J. Dolman, 2008: Precipitation recycling: Moisture sources over Europe using ERA-40 data. J. Hydrometeor., 9, 10731083, https://doi.org/10.1175/2008JHM962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1974: Climate and Life. D. H. Miller, Ed., International Geophysics Series, Vol. 18, Academic Press, 508 pp.

  • Cannon, F., L. M. V. Carvalho, C. Jones, A. Hoell, J. Norris, G. N. Kiladis, and A. A. Tahir, 2017: The influence of tropical forcing on extreme winter precipitation in the western Himalaya. Climate Dyn., 48, 12131232, https://doi.org/10.1007/s00382-016-3137-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., J. Wang, and L. Jin, 2009: Rapid warming in mid-latitude central Asia for the past 100 years. Front. Earth Sci. China, 3, 4250, https://doi.org/10.1007/s11707-009-0013-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., W. Huang, L. Jin, J. Chen, and J. Wang, 2011: Spatiotemporal precipitation variations in the arid central Asia in the context of global warming. Sci. China Earth Sci., 54, 18121821, https://doi.org/10.1007/s11430-011-4333-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X. L., Z. Su, Y. Ma, K. Yang, J. Wen, and Y. Zhang, 2013: An improvement of roughness height parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau. J. Appl. Meteor. Climatol., 52, 607622, https://doi.org/10.1175/JAMC-D-12-056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X. L., W. J. Massman, and Z. Su, 2019: A column canopy‐air turbulent diffusion method for different canopy structures. J. Geophys. Res. Atmos., 124, 488506, https://doi.org/10.1029/2018JD028883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., Z. Li, Y. Fan, H. Wang, and H. Deng, 2015: Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res., 139, 1119, https://doi.org/10.1016/j.envres.2014.12.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., Z. Li, W. Li, H. Deng, and Y. Shen, 2016: Water and ecological security: Dealing with hydroclimatic challenges at the heart of China’s Silk Road. Environ. Earth Sci., 75, 881, https://doi.org/10.1007/s12665-016-5385-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. C. H. Chiang, C. W. Lan, C. H. Chung, Y. C. Liao, and C. J. Lee, 2013: Increase in the range between wet and dry season precipitation. Nat. Geosci., 6, 263267, https://doi.org/10.1038/ngeo1744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., 1999: Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J. Hydrol., 216, 99110, https://doi.org/10.1016/S0022-1694(98)00293-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, H., and Y. Chen, 2017: Influences of recent climate change and human activities on water storage variations in central Asia. J. Hydrol., 544, 4657, https://doi.org/10.1016/j.jhydrol.2016.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, H., Y. Yin, and X. Han, 2020: Vulnerability of vegetation activities to drought in central Asia. Environ. Res. Lett., 15, 084005, https://doi.org/10.1088/1748-9326/ab93fa.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, F., P. Kumar, X.-Z. Liang, and M. Ting, 2006: Impact of atmospheric moisture storage on precipitation recycling. J. Climate, 19, 15131530, https://doi.org/10.1175/JCLI3691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, T., T. Su, F. Ji, R. Zhi, and Z. Han, 2018: Temporal characteristics of actual evapotranspiration over China under global warming. J. Geophys. Res. Atmos., 123, 58455858, https://doi.org/10.1029/2017JD028227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, B. P., 1981: On the calculation of the evaporation from land surface. Chin. J. Atmos. Sci., 5, 2331, https://doi.org/10.3878/j.issn.1006-9895.1981.01.03.

    • Search Google Scholar
    • Export Citation
  • Gao, X., M. Sun, Q. Luan, X. Zhao, J. Wang, G. He, and Y. Zhao, 2020: The spatial and temporal evolution of the actual evapotranspiration based on the remote sensing method in the Loess Plateau. Sci. Total Environ., 708, 135111, https://doi.org/10.1016/j.scitotenv.2019.135111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerlitz, L., E. Steirou, C. Schneider, V. Moron, S. Vorogushyn, and B. Merz, 2018: Variability of the cold season climate in central Asia. Part I: Weather types and their tropical and extratropical drivers. J. Climate, 31, 71857207, https://doi.org/10.1175/JCLI-D-17-0715.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greve, P., B. Orlowsky, B. Mueller, J. Sheffield, M. Reichstein, and S. I. Seneviratne, 2014: Global assessment of trends in wetting and drying over land. Nat. Geosci., 7, 716721, https://doi.org/10.1038/ngeo2247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Y., T. Yang, and Q. Ji, 2015: Glacier variation in response to climate change in Chinese Tianshan Mountains from 1989 to 2012. J. Mt. Sci., 12, 11891202, https://doi.org/10.1007/s11629-015-3445-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., C. Funk, and M. Barlow, 2015: The forcing of southwestern Asia teleconnections by low-frequency sea surface temperature variability during boreal winter. J. Climate, 28, 15111526, https://doi.org/10.1175/JCLI-D-14-00344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., M. Barlow, F. Cannon, and T. Xu, 2017: Oceanic origins of historical southwest Asia precipitation during the boreal cold season. J. Climate, 30, 28852903, https://doi.org/10.1175/JCLI-D-16-0519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., J. Eischeid, M. Barlow, and A. McNally, 2020: Characteristics, precursors, and potential predictability of Amu Darya Drought in an Earth system model large ensemble. Climate Dyn., 55, 21852206, https://doi.org/10.1007/s00382-020-05381-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., C. Zhang, Q. Hu, and H. Tian, 2014: Temperature changes in central Asia from 1979–2011 based on multiple datasets. J. Climate, 27, 11431167, https://doi.org/10.1175/JCLI-D-13-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., X. Chen, D. Chen, J. Li, S. Wang, Q. Zhou, G. Yin, and M. Guo, 2018: “Dry gets drier, wet gets wetter”: A case study over the arid regions of central Asia. Int. J. Climatol., 39, 10721091, https://doi.org/10.1002/joc.5863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, L., L. Zhong, and Z. Ke, 2016: Precipitation recycling and soil–precipitation interaction across the arid and semi-arid regions of China. Int. J. Climatol., 36, 37083722, https://doi.org/10.1002/joc.4586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, L., L. Zhong, and Z. Ma, 2017: Decadal transition of moisture sources and transport in northwestern China during summer from 1982 to 2010. J. Geophys. Res. Atmos., 122, 12 52212 540, https://doi.org/10.1002/2017JD027728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, D., Y. Zhang, Y. Zhou, A. Huang, Y. Zhao, and H. Wu, 2014: Changes of the annual precipitation over central Asia in the twenty-first century projected by multimodels of CMIP5. J. Climate, 27, 66276646, https://doi.org/10.1175/JCLI-D-14-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., H. Yu, X. Guan, G. Wang, and R. Guo, 2016: Accelerated dryland expansion under climate change. Nat. Climate Change, 6, 166171, https://doi.org/10.1038/nclimate2837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., and Coauthors, 2020: Declines in global ecological security under climate change. Ecol. Indic., 117, 106651, https://doi.org/10.1016/j.ecolind.2020.106651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., S. Feng, J. Chen, and F. Chen, 2015: Physical mechanisms of summer precipitation variations in the Tarim Basin in northwestern China. J. Climate, 28, 35793591, https://doi.org/10.1175/JCLI-D-14-00395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Search Google Scholar
    • Export Citation
  • Jiang, J., T. Zhou, H. Wang, Y. Qian, D. Noone, and W. Man, 2020a: Tracking moisture sources of precipitation over central Asia: A study based on the water-source-tagging method. J. Climate, 33, 10 33910 355, https://doi.org/10.1175/JCLI-D-20-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J., T. Zhou, X. Chen, and L. Zhang, 2020b: Future changes in precipitation over central Asia based on CMIP6 projections. Environ. Res. Lett., 15, 054009, https://doi.org/10.1088/1748-9326/ab7d03.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, L., J. Guli, A. Bao, H. Guo, and F. Ndayisaba, 2017: Vegetation dynamics and responses to climate change and human activities in central Asia. Sci. Total Environ., 599–600, 967980, https://doi.org/10.1016/j.scitotenv.2017.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, B., Y. Chen, Z. Chen, H. Xiong, and L. Lian, 2016: Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010? Atmos. Res., 167, 275284, https://doi.org/10.1016/j.atmosres.2015.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, D., M. Pan, Z. Cong, L. Zhang, and E. Wood, 2013: Vegetation control on water and energy balance within the Budyko framework. Water Resour. Res., 49, 969976, https://doi.org/10.1002/wrcr.20107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., J. Perlwitz, X. Quan, and M. P. Hoerling, 2008: Modelling the influence of North Atlantic multidecadal warmth on the Indian summer rainfall. Geophys. Res. Lett., 35, L05804, https://doi.org/10.1029/2007GL032901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., J. Xia, D. She, L. Cheng, L. Zou, and B. Liu, 2020: Quantifying the impacts of climate change and vegetation variation on actual evapotranspiration based on the Budyko hypothesis in North and South Panjiang Basin, China. Water, 12, 508, https://doi.org/10.3390/w12020508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. Chen, W. Li, H. Deng, and G. Fang, 2015: Potential impacts of climate change on vegetation dynamics in central Asia. J. Geophys. Res. Atmos., 120, 12 34512 356, https://doi.org/10.1002/2015JD023618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. Chen, G. Fang, and Y. Li, 2017: Multivariate assessment and attribution of droughts in central Asia. Sci. Rep., 7, 1316, https://doi.org/10.1038/s41598-017-01473-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Q., J. Zhang, A. T. Game, Y. Chang, and S. Li, 2020: Spatiotemporal variability of summer precipitation and precipitation extremes and associated large-scale mechanisms in central Asia during 1979–2018. J. Hydrol. X, 8, 100061, https://doi.org/10.1016/j.hydroa.2020.100061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., W. Waegeman, W. A. Dorigo, N. E. C. Verhoest, and D. G. Miralles, 2018: Terrestrial evaporation response to modes of climate variability. Climate Atmos. Sci., 1, 43, https://doi.org/10.1038/s41612-018-0053-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, T. A., and F. Dominguez, 2014: Sources of atmospheric moisture for the La Plata River basin. J. Climate, 27, 67376753, https://doi.org/10.1175/JCLI-D-14-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., and Coauthors, 2013: The role of upper-level dynamics and surface processes for Pakistan flood of July 2010. Quart. J. Roy. Meteor. Soc., 139, 17801797, https://doi.org/10.1002/qj.2082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, L., Y. Zhao, and M. Li, 2021: Effects of whole SST anomaly in the tropical Indian Ocean on summer rainfall over central Asia. Front. Earth Sci., 9, 738066, https://doi.org/10.3389/feart.2021.738066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., and Coauthors, 2013: El Niño–La Niña cycle and recent trends in continental evaporation. Nat. Climate Change, 4, 122126, https://doi.org/10.1038/nclimate2068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, D., and T. Zhou, 2017: Why was the arid and semiarid northwest China getting wetter in the recent decades? J. Geophys. Res. Atmos., 122, 90609075, https://doi.org/10.1002/2016JD026424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, D., T. Zhou, L. Zhang, and B. Wu, 2018: Human contribution to the increasing summer precipitation in central Asia from 1961 to 2013. J. Climate, 31, 80058021, https://doi.org/10.1175/JCLI-D-17-0843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, D., T. Zhou, L. Zhang, and L. Zou, 2019: Detecting human influence on the temperature changes in central Asia. Climate Dyn., 53, 45534568, https://doi.org/10.1007/s00382-019-04804-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, D., T. Zhou, and L. Zhang, 2020: Moisture sources associated with precipitation during dry and wet seasons over central Asia. J. Climate, 33, 10 75510 771, https://doi.org/10.1175/JCLI-D-20-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., and G. D. Farquhar, 2011: A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res., 47, W00G07, https://doi.org/10.1029/2010WR009826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., F. Sun, W. H. Lim, and G. D. Farquhar, 2014: A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci., 18, 15751589, https://doi.org/10.5194/hess-18-1575-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Lüthi, P. Vidale and C. Schar, 2008: The precipitation climate of Central Asia—Intercomparison of observational and numerical data sources in a remote semiarid region. Int. J. Climatol., 28, 295314, https://doi.org/10.1002/joc.1532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., Y. Shen, E. Kang, D. Li, Y. Ding, G. Zhang, and R. Hu, 2007: Recent and future climate change in northwest China. Climatic Change, 80, 379393, https://doi.org/10.1007/s10584-006-9121-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Si, D., and Y. H. Ding, 2016: Oceanic forcings of the interdecadal variability in East Asian summer rainfall. J. Climate, 29, 76337649, https://doi.org/10.1175/JCLI-D-15-0792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., C. Schwierz, and H. Wernli, 2008: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res., 113, D03107, https://doi.org/10.1029/2007JD008503.

    • Search Google Scholar
    • Export Citation
  • Su, T., T. Feng, and G. Feng, 2015: Evaporation variability under climate warming in five reanalyses and its association with pan evaporation over China. J. Geophys. Res. Atmos., 120, 80808098, https://doi.org/10.1002/2014JD023040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sui, C., X. Li, M. Yang, and H. Huang, 2005: Estimation of oceanic precipitation efficiency in cloud models. J. Atmos. Sci., 62, 43584370, https://doi.org/10.1175/JAS3587.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sui, C., X. Li, and M. Yang, 2007: On the definition of precipitation efficiency. J. Atmos. Sci., 64, 45064513, https://doi.org/10.1175/2007JAS2332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2014: Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART. J. Climate, 27, 24572474, https://doi.org/10.1175/JCLI-D-13-00517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., K. Yang, W. Guo, Y. Wang, J. He, and H. Lu, 2020: Why has the inner Tibetan Plateau become wetter since the mid-1990s? J. Climate, 33, 85078522, https://doi.org/10.1175/JCLI-D-19-0471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. Portmann, 2007: How often will it rain? J. Climate, 20, 48014818, https://doi.org/10.1175/JCLI4263.1.

  • Sutton, R. T., and B. Dong, 2012: Atlantic Ocean influence on a shift in European climate in the 1990s. Nat. Geosci., 5, 788792, https://doi.org/10.1038/ngeo1595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syed, F. S., F. Giorgi, J. S. Pal, and K. Keay, 2010: Regional climate model simulation of winter climate over central–southwest Asia, with emphasis on NAO and ENSO effects. Int. J. Climatol., 30, 220235, https://doi.org/10.1002/joc.1887.

    • Search Google Scholar
    • Export Citation
  • Ta, Z., R. Liu, X. Chen, G. Mu, and Y. Guo, 2018: Analysis of the spatio-temporal patterns of dry and wet conditions in central Asia. Atmosphere, 9, 7, https://doi.org/10.3390/atmos9010007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurman, M., 2011: Natural disaster risks in central Asia: A synthesis. United Nations Development Programme, 40 pp.

  • Tian, L., J. Jin, P. Wu, and G. Y. Niu, 2018: Quantifying the impact of climate change and human activities on streamflow in a semi-arid watershed with the Budyko equation incorporating dynamic vegetation information. Water, 10, 1781, https://doi.org/10.3390/w10121781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Ent, R. J., and H. H. G. Savenije, 2013: Oceanic sources of continental precipitation and the correlation with sea surface temperature. Water Resour. Res., 49, 39934004, https://doi.org/10.1002/wrcr.20296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., and M. Hejazi, 2011: Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res., 47, W00J12, https://doi.org/10.1029/2010WR010283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., P.-M. Zhai, and D.-H. Qin, 2020: New perspectives on ‘warming–wetting’ trend in Xinjiang, China. Adv. Climate Change Res., 11, 252260, https://doi.org/10.1016/j.accre.2020.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., M. Zhang, Y. Che, F. Chen, and F. Qiang, 2016: Contribution of recycled moisture to precipitation in oases of arid central Asia: A stable isotope approach. Water Resour. Res., 52, 32463257, https://doi.org/10.1002/2015WR018135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and Coauthors, 2016: The analytical derivation of multiple elasticities of runoff to climate change and catchment characteristics alteration. J. Hydrol., 541, 10421056, https://doi.org/10.1016/j.jhydrol.2016.08.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weier, J., and D. Herring, 2000: Measuring vegetation (NDVI & EVI). NASA Earth Observatory, accessed 12 August 2021, https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php.

    • Search Google Scholar
    • Export Citation
  • Wu, J., C. Miao, Y. Wang, Q. Duan, and X. Zhang, 2017: Contribution analysis of the long-term changes in seasonal runoff on the Loess Plateau, China, using eight Budyko-based methods. J. Hydrol., 545, 263275, https://doi.org/10.1016/j.jhydrol.2016.12.050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., Y. Ding, Y. Liu, and X. Li, 2019: The characteristics of moisture recycling and its impact on regional precipitation against the background of climate warming over Northwest China. Int. J. Climatol., 39, 52415255, https://doi.org/10.1002/joc.6136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., D. Yang, H. Yang, and H. Lei, 2014: Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin. J. Hydrol., 510, 530540, https://doi.org/10.1016/j.jhydrol.2013.12.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., D. Yang, Z. Lei, and F. Sun, 2008: New analytical derivation of the mean annual water-energy balance equation. Water Resour. Res., 44, W03410, https://doi.org/10.1029/2007WR006135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., G. Xu, H. Mao, and Y. Wang, 2020: Spatiotemporal variation in precipitation and water vapor transport over central Asia in winter and summer under global warming. Front. Earth Sci., 8, 297, https://doi.org/10.3389/feart.2020.00297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., and Y. Chen, 2015: An analysis of terrestrial water storage variations from GRACE and GLDAS: The Tianshan Mountains and its adjacent areas, central Asia. Quat. Int., 358, 106112, https://doi.org/10.1016/j.quaint.2014.09.077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, J., C. Yaning, J. Chen, Y. Zhao, D. Tuoliewubieke, J. Li, L. Yang, and W. Mao, 2020a: Intensification of extreme precipitation in arid central Asia. J. Hydrol., 598, 125760, https://doi.org/10.1016/j.jhydrol.2020.125760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, J., Y. Chen, Y. Zhao, X. Guan, W. Mao, and L. Yang, 2020b: Climatic and associated atmospheric water cycle changes over the Xinjiang, China. J. Hydrol., 585, 124823, https://doi.org/10.1016/j.jhydrol.2020.124823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yapiyev, V., and Coauthors, 2017: The changing water cycle: Burabay National Nature Park, northern Kazakhstan. Wiley Interdiscip. Rev.: Water, 4, e1227, https://doi.org/10.1002/wat2.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yapiyev, V., and Coauthors, 2019: Estimation of water storage changes in small endorheic lakes in northern Kazakhstan. J. Arid Environ., 160, 4255, https://doi.org/10.1016/j.jaridenv.2018.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, G., Z. Hu, X. Chen, and T. Tiyip, 2016: Vegetation dynamics and its response to climate change in central Asia. J. Arid Land, 8, 375388, https://doi.org/10.1007/s40333-016-0043-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Z.-Y., H. Wang, and X. Liu, 2014: A comparative study on precipitation climatology and interannual variability in the lower midlatitude east Asia and central Asia. J. Climate, 27, 78307848, https://doi.org/10.1175/JCLI-D-14-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y., and Coauthors, 2018: Climate change, water resources and sustainable development in the arid and semi-arid lands of central Asia in the past 30 years. J. Arid Land, 11, 114, https://doi.org/10.1007/s40333-018-0073-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., Q. Ma, H. Chen, S. Zhao, and Z. Chen, 2021: Increasing warm-season precipitation in Asian drylands and response to reducing spring snow cover over the Tibetan Plateau. J. Climate, 34, 31293144, https://doi.org/10.1175/JCLI-D-20-0479.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., T. Zhou, L. Zhang, and L. Zou, 2019: Future intensification of the water cycle with an enhanced annual cycle over global land monsoon regions. J. Climate, 32, 54375451, https://doi.org/10.1175/JCLI-D-18-0628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and J. Sun, 2012: Model projections of precipitation minus evaporation in China. Acta Meteor. Sin., 26, 376388, https://doi.org/10.1007/s13351-012-0309-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., D. Kong, R. Gan, F. H. S. Chiew, T. R. McVicar, Q. Zhang, and Y. Yang, 2019: Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ., 222, 165182, https://doi.org/10.1016/j.rse.2018.12.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., P. Zhao, and J. Chen, 2019: The interdecadal change of summer water vapor over the Tibetan Plateau and associated mechanisms. J. Climate, 32, 41034119, https://doi.org/10.1175/JCLI-D-18-0364.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y.-S., Z. Xie, and X. Liu, 2019: An analysis of moisture sources of torrential rainfall events over Xinjiang, China. J. Hydrometeor., 20, 21092122, https://doi.org/10.1175/JHM-D-19-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1978 0 0
Full Text Views 4412 2673 165
PDF Downloads 2684 736 85