Enhanced Tropospheric Biennial Oscillation of the East Asian Summer Monsoon since the Late 1970s

Tiantian Yu aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Tiantian Yu in
Current site
Google Scholar
PubMed
Close
,
Juan Feng aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Juan Feng in
Current site
Google Scholar
PubMed
Close
,
Wen Chen bCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Wen Chen in
Current site
Google Scholar
PubMed
Close
,
Kaiming Hu aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Kaiming Hu in
Current site
Google Scholar
PubMed
Close
, and
Shangfeng Chen aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Shangfeng Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The tropospheric biennial oscillation (TBO) of the East Asian summer monsoon (EASM) has major impacts on East Asian climate. Here it is shown that, since the late 1970s, the TBO signal of EASM has strengthened significantly. The EASM TBO in wind anomalies undergoes a transition from a cyclone over the western North Pacific (WNPC) in the preceding summer to an anticyclone over the western North Pacific (WNPAC) in the following summer, with the anomalies strengthening remarkably after the late 1970s. Correspondingly, the biennial components of precipitation anomalies in eastern China show different distributions. Both observational and numerical simulation analyses demonstrate that these changes are caused by the westward shift of El Niño warming and enhanced Indo-Pacific and Atlantic–Pacific coupling. The positive sea surface temperature (SST) anomalies are associated with the TBO of the EASM shift toward the central Pacific after the late 1970s, which favors the strengthening of the WNPC and causes a weakened EASM. In following summer, both the north Indian Ocean and tropical North Atlantic SST warming have been closely coupled with El Niño since the late 1970s, which favors the strengthening of WNPAC and causes an intensified EASM. Together, these changes provide more a favorable background state for the transition of circulation anomalies over the western North Pacific, giving rise to enhanced biennial variability in EASM in the late 1970s.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Juan Feng, juanfeng@mail.iap.ac.cn

Abstract

The tropospheric biennial oscillation (TBO) of the East Asian summer monsoon (EASM) has major impacts on East Asian climate. Here it is shown that, since the late 1970s, the TBO signal of EASM has strengthened significantly. The EASM TBO in wind anomalies undergoes a transition from a cyclone over the western North Pacific (WNPC) in the preceding summer to an anticyclone over the western North Pacific (WNPAC) in the following summer, with the anomalies strengthening remarkably after the late 1970s. Correspondingly, the biennial components of precipitation anomalies in eastern China show different distributions. Both observational and numerical simulation analyses demonstrate that these changes are caused by the westward shift of El Niño warming and enhanced Indo-Pacific and Atlantic–Pacific coupling. The positive sea surface temperature (SST) anomalies are associated with the TBO of the EASM shift toward the central Pacific after the late 1970s, which favors the strengthening of the WNPC and causes a weakened EASM. In following summer, both the north Indian Ocean and tropical North Atlantic SST warming have been closely coupled with El Niño since the late 1970s, which favors the strengthening of WNPAC and causes an intensified EASM. Together, these changes provide more a favorable background state for the transition of circulation anomalies over the western North Pacific, giving rise to enhanced biennial variability in EASM in the late 1970s.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Juan Feng, juanfeng@mail.iap.ac.cn
Save
  • An, S.-I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 20442055, https://doi.org/10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belmont, A. D., and D. G. Dartt, 1968: Variation with longitude of the quasi-biennial oscillation. Mon. Wea. Rev., 96, 767777, https://doi.org/10.1175/1520-0493(1968)096<0767:VWLOTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., and T. Li, 2000: A theory for the tropical tropospheric biennial oscillation. J. Atmos. Sci., 57, 22092224, https://doi.org/10.1175/1520-0469(2000)057<2209:ATFTTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, and W. Chen, 2018: Modulation of spring northern tropical Atlantic sea surface temperature on the El Niño-Southern Oscillation–East Asian summer monsoon connection. Int. J. Climatol., 38, 50205029, https://doi.org/10.1002/joc.5710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., B. Yu, R. Wu, W. Chen, and L. Song, 2020: The dominant North Pacific atmospheric circulation patterns and their relations to Pacific SSTs: Historical simulations and future projections in the IPCC AR6 models. Climate Dyn., 56, 701725, https://doi.org/10.1007/s00382-020-05501-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., J. Feng, and R. Wu, 2013: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622635, https://doi.org/10.1175/JCLI-D-12-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., S.-P. Xie, H. Tokinaga, Y. M. Okumura, H. Kubota, N. Johnson, and X. T. Zheng, 2012: Interdecadal variations in ENSO teleconnection to the Indo-western Pacific for 1870–2007. J. Climate, 25, 17221744, https://doi.org/10.1175/JCLI-D-11-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Z. X., 2013: New metrics of the tropospheric biennial oscillation in the East Asian summer monsoon and its interdecadal shift. Atmos. Oceanic Sci. Lett., 6, 440444, https://doi.org/10.3878/j.issn.1674-2834.13.0052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dandi, R. A., J. S. Chowdary, P. A. Pillai, N. S. S. Sidhan, K. Koteswararao, and S. S. V. S. Ramakrishna, 2020: Impact of El Niño Modoki on Indian summer monsoon rainfall: Role of western North Pacific circulation in observations and CMIP5 models. Int. J. Climatol., 40, 21172133, https://doi.org/10.1002/joc.6322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, G. Huang, and K. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., L. Wang, and W. Chen, 2014: How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases. J. Climate, 27, 26822698, https://doi.org/10.1175/JCLI-D-13-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., W. Chen, and X. Wang, 2020: Reintensification of the anomalous western North Pacific anticyclone during the El Niño Modoki decaying summer: Relative importance of tropical Atlantic and Pacific SST anomalies. J. Climate, 33, 32713288, https://doi.org/10.1175/JCLI-D-19-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ham, Y. G., J. S. Kug, J. Y. Park, and F. F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C. C., T. C. Chang, and H. H. Hsu, 2014: Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s. J. Geophys. Res. Atmos., 119, 37153722, https://doi.org/10.1002/2013JD021394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, X. T. Zheng, S. P. Xie, X. Qu, Y. Du, and L. Liu, 2014: Interdecadal variations in ENSO influences on northwest Pacific–East Asian early summertime climate simulated in CMIP5 models. J. Climate, 27, 59825998, https://doi.org/10.1175/JCLI-D-13-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. H., and F. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243256, https://doi.org/10.2151/jmsj1965.70.1B_243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. H., L. Zhou, and W. Chen, 2003: The progresses of recent studies on the variabilities of the East Asian monsoon and their causes. Adv. Atmos. Sci., 20, 5569, https://doi.org/10.1007/BF03342050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. H., J. Chen, and G. Huang, 2007: Characteristics and variations of the East Asian monsoon system and its impacts on climate disasters in China. Adv. Atmos. Sci., 24, 9931023, https://doi.org/10.1007/s00376-007-0993-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. K., D. B. Enfield, and C. Wang, 2008: Why do some El Niños have no impact on tropical North Atlantic SST? Geophys. Res. Lett., 35, L16705, https://doi.org/10.1029/2008GL034734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Z. Wu, Z. Jiang, and J. He, 2010: Can global warming strengthen the East Asian summer monsoon? J. Climate, 23, 66966705, https://doi.org/10.1175/2010JCLI3434.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., J. Lu, G. Huang, and K. Hu, 2008: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 60806088, https://doi.org/10.1175/2008JCLI2433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terr. Atmos. Oceanic Sci., 16, 285314, https://doi.org/10.3319/TAO.2005.16.2.285(A).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, B. Wu, T. Zhou, C.-P. Chang, and R. Zhang, 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 9871006, https://doi.org/10.1007/s13351-017-7147-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., S.-P. Xie, S. T. Gille, and C. Yoo, 2016: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., Z. Z. Hu, A. Kumar, P. Peng, D. C. Collins, and B. Jha, 2015: Tropospheric biennial oscillation of summer monsoon rainfall over East Asia and its association with ENSO. Climate Dyn., 45, 17471759, https://doi.org/10.1007/s00382-014-2429-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Res. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1.25.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1994: Coupled land–ocean–atmosphere processes and South Asian monsoon variability. Science, 266, 263267, https://doi.org/10.1126/science.266.5183.263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., 1997: The South Asian monsoon and the tropospheric biennial oscillation. J. Climate, 10, 19211943, https://doi.org/10.1175/1520-0442(1997)010<1921:TSAMAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and J. M. Arblaster, 2002: The tropospheric biennial oscillation and Asian-Australian monsoon rainfall. J. Climate, 15, 722744, https://doi.org/10.1175/1520-0442(2002)015<0722:TTB3OAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and J. M. Arblaster, 2011: Decadal variability of Asian-Australian monsoon–ENSO–TBO relationships. J. Climate, 24, 49254940, https://doi.org/10.1175/2011JCLI4015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and J. Loschnigg, 2003: Coupled ocean–atmosphere dynamical processes in the tropical Indian and Pacific Oceans and the TBO. J. Climate, 16, 21382158, https://doi.org/10.1175/2767.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2007: An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J. Meteor. Soc. Japan, 85, 335348, https://doi.org/10.2151/jmsj.85.335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pillai, P. A., and K. Mohankumar, 2007: Tropospheric biennial oscillation of the Indian summer monsoon with and without the El Niño–Southern Oscillation. Int. J. Climatol., 27, 20952101, https://doi.org/10.1002/joc.1503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pillai, P. A., and K. Mohankumar, 2009: Role of TBO and ENSO scale ocean–atmosphere interaction in the Indo-Pacific region on Asian summer monsoon variability. Theor. Appl. Climatol., 97, 99108, https://doi.org/10.1007/s00704-008-0053-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pillai, P. A., and K. Mohankumar, 2010: Effect of late 1970’s climate shift on tropospheric biennial oscillation—Role of local Indian Ocean processes on Asian summer monsoon. Int. J. Climatol., 30, 509521, https://doi.org/10.1002/joc.1903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., X. Wang, and C. F. Ropelewski, 1990: The biennial component of ENSO variability. J. Mar. Syst., 1, 7196, https://doi.org/10.1016/0924-7963(90)90153-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., W. J. Campbell, L. A. Rasmussen, and D. G. Rogers, 1961: Evidence of a downward-propagating, annual wind reversal in the equatorial stratosphere. J. Geophys. Res., 66, 813818, https://doi.org/10.1029/JZ066i003p00813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology Rep. 349, 127 pp.

    • Search Google Scholar
    • Export Citation
  • Rong, X. Y., R. H. Zhang, and T. Li, 2010: Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon–ENSO relationship. Chin. Sci. Bull., 55, 24582468, https://doi.org/10.1007/s11434-010-3098-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, S., and K. M. Lau, 1995: Biennial oscillation associated with the East Asian summer monsoon and tropical sea surface temperatures. J. Meteor. Soc. Japan, 73, 105124, https://doi.org/10.2151/jmsj1965.73.1_105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Si, D., and Y. Ding, 2012: The tropospheric biennial oscillation in the East Asian monsoon region and its influence on the precipitation in China and large-scale atmospheric circulation in East Asia. Int. J. Climatol., 32, 16971716, https://doi.org/10.1002/joc.2386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., R. J. Greatbatch, W. Park, and M. Latif, 2010: Two major modes of variability of the East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 829841, https://doi.org/10.1002/qj.635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., X. Zhang, F. W. Zwiers, L. Song, H. Wan, T. Hu, H. Yin, and G. Ren, 2014: Rapid increase in the risk of extreme summer heat in eastern China. Nat. Climate Change, 4, 10821085, https://doi.org/10.1038/nclimate2410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 32523265, https://doi.org/10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and K. M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Z. Wu, J. Li, J. Liu, C.-P. Chang, Y. Ding, and G. Wu, 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 44494463, https://doi.org/10.1175/2008JCLI2183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and J. Y. Yu, 2018: A recent shift in the monsoon centers associated with the tropospheric biennial oscillation. J. Climate, 31, 325340, https://doi.org/10.1175/JCLI-D-17-0349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., J. Y. Yu, and H. Paek, 2017: Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun., 8, 14887, https://doi.org/10.1038/ncomms14887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., 2008: Possible role of the Indian Ocean in the in-phase transition of the Indian to Australian summer monsoon. J. Climate, 21, 57275741, https://doi.org/10.1175/2008JCLI2354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., 2009: Possible role of the Indian Ocean in the out-of-phase transition of the Australian to Indian summer monsoon. J. Climate, 22, 18341849, https://doi.org/10.1175/2008JCLI2602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004: The tropospheric biennial oscillation of the monsoon–ENSO system in an interactive ensemble coupled GCM. J. Climate, 17, 16231640, https://doi.org/10.1175/1520-0442(2004)017<1623:TTBOOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and Z. Q. He, 2019: Northern tropical Atlantic warming in El Niño decaying spring: Impacts of El Niño amplitude. Geophys. Res. Lett., 46, 14 07214 081, https://doi.org/10.1029/2019GL085840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., G. Huang, Z. Du, and K. Hu, 2014: Cross-season relation of the South China Sea precipitation variability between winter and summer. Climate Dyn., 43, 193207, https://doi.org/10.1007/s00382-013-1820-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Du, G. Huang, X. T. Zheng, H. Tokinaga, K. Hu, and Q. Liu, 2010: Decadal shift in El Niño influences on Indo-western Pacific and East Asian climate in the 1970s. J. Climate, 23, 33523368, https://doi.org/10.1175/2010JCLI3429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S. P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1990: Impact of Indian monsoon on the coupled atmosphere/ocean system in the tropical Pacific. Meteor. Atmos. Phys., 44, 2941, https://doi.org/10.1007/BF01026809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1991: The monsoon year—A new concept of the climatic year in the tropics. Bull. Amer. Meteor. Soc., 72, 13311338, https://doi.org/10.1175/1520-0477(1991)072<1331:TMYNCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., P.-K. Kao, H. Paek, H.-H. Hsu, C.-W. Hung, M.-M. Lu, and S.-I. An, 2015: Linking emergence of the central Pacific El Niño to the Atlantic multidecadal oscillation. J. Climate, 28, 651662, https://doi.org/10.1175/JCLI-D-14-00347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, T., W. Chen, J. Feng, K. Hu, L. Song, and P. Hu, 2021a: Roles of ENSO in the link of the East Asian summer monsoon to the ensuing winter monsoon. J. Geophys. Res. Atmos., 126, e2020JD033994, https://doi.org/10.1029/2020JD033994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, T., J. Feng, W. Chen, and X. Wang, 2021b: Persistence and breakdown of the western North Pacific anomalous anticyclone during the EP and CP El Niño decaying spring. Climate Dyn., 57, 35293544, https://doi.org/10.1007/s00382-021-05882-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., Q. Y. Min, and J. Z. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci., 60, 11241132, https://doi.org/10.1007/s11430-016-9026-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., D. Gong, J. Li, and B. Li, 2009: Detecting and understanding the multi-decadal variability of the East Asian summer monsoon—Recent progress and state of affairs. Meteor. Z., 18, 455467, https://doi.org/10.1127/0941-2948/2009/0396.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 320 0 0
Full Text Views 1321 791 69
PDF Downloads 583 130 4