Roles of Meridional Overturning in Subpolar Southern Ocean SST Trends: Insights from Ensemble Simulations

Liping Zhang aNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
bUniversity Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Liping Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1122-8927
,
Thomas L. Delworth aNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Thomas L. Delworth in
Current site
Google Scholar
PubMed
Close
,
Sarah Kapnick aNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Sarah Kapnick in
Current site
Google Scholar
PubMed
Close
,
Jie He cSchool of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Jie He in
Current site
Google Scholar
PubMed
Close
,
William Cooke aNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by William Cooke in
Current site
Google Scholar
PubMed
Close
,
Andrew T. Wittenberg aNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Andrew T. Wittenberg in
Current site
Google Scholar
PubMed
Close
,
Nathaniel C. Johnson aNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Nathaniel C. Johnson in
Current site
Google Scholar
PubMed
Close
,
Anthony Rosati aNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
bUniversity Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Anthony Rosati in
Current site
Google Scholar
PubMed
Close
,
Xiaosong Yang aNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Xiaosong Yang in
Current site
Google Scholar
PubMed
Close
,
Feiyu Lu aNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
dProgram in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Feiyu Lu in
Current site
Google Scholar
PubMed
Close
,
Mitchell Bushuk aNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
bUniversity Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Mitchell Bushuk in
Current site
Google Scholar
PubMed
Close
,
Colleen McHugh eScience Applications International Corporation (SAIC), Reston, Virginia

Search for other papers by Colleen McHugh in
Current site
Google Scholar
PubMed
Close
,
Hiroyuki Murakami aNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
bUniversity Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Hiroyuki Murakami in
Current site
Google Scholar
PubMed
Close
,
Fanrong Zeng aNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Fanrong Zeng in
Current site
Google Scholar
PubMed
Close
,
Liwei Jia aNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
bUniversity Corporation for Atmospheric Research, Boulder, Colorado

Search for other papers by Liwei Jia in
Current site
Google Scholar
PubMed
Close
,
Kai-Chih Tseng aNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
dProgram in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Kai-Chih Tseng in
Current site
Google Scholar
PubMed
Close
, and
Yushi Morioka fApplication Laboratory, Research Institute for Value-Added-Information Generation (VAiG), JAMSTEC, Yokohama, Japan

Search for other papers by Yushi Morioka in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

One of the most puzzling observed features of recent climate has been a multidecadal surface cooling trend over the subpolar Southern Ocean (SO). In this study we use large ensembles of simulations with multiple climate models to study the role of the SO meridional overturning circulation (MOC) in these sea surface temperature (SST) trends. We find that multiple competing processes play prominent roles, consistent with multiple mechanisms proposed in the literature for the observed cooling. Early in the simulations (twentieth century and early twenty-first century) internal variability of the MOC can have a large impact, in part due to substantial simulated multidecadal variability of the MOC. Ensemble members with initially strong convection (and related surface warming due to convective mixing of subsurface warmth to the surface) tend to subsequently cool at the surface as convection associated with internal variability weakens. A second process occurs in the late-twentieth and twenty-first centuries, as weakening of oceanic convection associated with global warming and high-latitude freshening can contribute to the surface cooling trend by suppressing convection and associated vertical mixing of subsurface heat. As the simulations progress, the multidecadal SO variability is suppressed due to forced changes in the mean state and increased oceanic stratification. As a third process, the shallower mixed layers can then rapidly warm due to increasing forcing from greenhouse gas warming. Also, during this period the ensemble spread of SO SST trend partly arises from the spread of the wind-driven Deacon cell strength. Thus, different processes could conceivably have led to the observed cooling trend, consistent with the range of possibilities presented in the literature. To better understand the causes of the observed trend, it is important to better understand the characteristics of internal low-frequency variability in the SO and the response of that variability to global warming.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liping Zhang, liping.zhang@noaa.gov

Abstract

One of the most puzzling observed features of recent climate has been a multidecadal surface cooling trend over the subpolar Southern Ocean (SO). In this study we use large ensembles of simulations with multiple climate models to study the role of the SO meridional overturning circulation (MOC) in these sea surface temperature (SST) trends. We find that multiple competing processes play prominent roles, consistent with multiple mechanisms proposed in the literature for the observed cooling. Early in the simulations (twentieth century and early twenty-first century) internal variability of the MOC can have a large impact, in part due to substantial simulated multidecadal variability of the MOC. Ensemble members with initially strong convection (and related surface warming due to convective mixing of subsurface warmth to the surface) tend to subsequently cool at the surface as convection associated with internal variability weakens. A second process occurs in the late-twentieth and twenty-first centuries, as weakening of oceanic convection associated with global warming and high-latitude freshening can contribute to the surface cooling trend by suppressing convection and associated vertical mixing of subsurface heat. As the simulations progress, the multidecadal SO variability is suppressed due to forced changes in the mean state and increased oceanic stratification. As a third process, the shallower mixed layers can then rapidly warm due to increasing forcing from greenhouse gas warming. Also, during this period the ensemble spread of SO SST trend partly arises from the spread of the wind-driven Deacon cell strength. Thus, different processes could conceivably have led to the observed cooling trend, consistent with the range of possibilities presented in the literature. To better understand the causes of the observed trend, it is important to better understand the characteristics of internal low-frequency variability in the SO and the response of that variability to global warming.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liping Zhang, liping.zhang@noaa.gov

Supplementary Materials

    • Supplemental Materials (pdf 1.21 MB)
Save
  • Adcroft, A., and Coauthors, 2019: The GFDL global ocean and sea ice model OM4.0: Model description and simulation features. J. Adv. Model. Earth Syst., 11, 31673211, https://doi.org/10.1029/2019MS001726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, https://doi.org/10.1175/JCLI-3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., J. Marshall, J. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549555, https://doi.org/10.1038/ngeo2731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bilgen, S. I., and B. P. Kirtman, 2020: Impact of ocean model resolution on understanding the delayed warming of the Southern Ocean. Environ. Res. Lett., 15, 114012, https://doi.org/10.1088/1748-9326/abbc3e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. J. van Oldenborgh, S. S. Drijfhout, B. Wouters, and C. A. Katsman, 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea ice expansion. Nat. Geosci., 6, 376379, https://doi.org/10.1038/ngeo1767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bronselaer, B., and Coauthors, 2018: Change in future climate due to Antarctic meltwater. Nature, 564, 5358, https://doi.org/10.1038/s41586-018-0712-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, E. C., E. A. Wilson, G. W. K. Moore, S. C. Riser, C. E. Brayton, M. R. Mazloff, and L. D. Talley, 2019: Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies. Nature, 570, 319325, https://doi.org/10.1038/s41586-019-1294-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., and L. M. Polvani, 2020: Using multiple large ensembles to elucidate the discrepancy between the 1979–2019 modeled and observed Antarctic sea ice trends. Geophys. Res. Lett., 47, e2020GL088339, https://doi.org/10.1029/2020GL088339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheon, W. G., and A. L. Gordon, 2019: Open-ocean polynyas and deep convection in the Southern Ocean. Sci. Rep., 9, 6935, https://doi.org/10.1038/s41598-019-43466-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., J. B. Palter, E. D. Galbraith, R. Bernardello, and I. Marinov, 2014: Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Climate Change, 4, 278282, https://doi.org/10.1038/nclimate2132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2008: Simulated impact of altered Southern Hemisphere winds on the Atlantic meridional over-turning circulation. Geophys. Res. Lett., 35, L20708, https://doi.org/10.1029/2008GL035166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, https://doi.org/10.1175/JCLI3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, https://doi.org/10.1175/JCLI-D-11-00316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2020: SPEAR-the next generation GFDL modeling system for seasonal to multidecadal prediction and projection. J. Adv. Model. Earth Syst., 12, e2019MS001895, https://doi.org/10.1029/2019MS001895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457, https://doi.org/10.1038/35044048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and G. Danabasoglu, 2011: Response to increasing Southern Hemisphere winds in CCSM4. J. Climate, 24, 49924998, https://doi.org/10.1175/JCLI-D-10-05011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosse, H., Q. Dalaiden, M. G. P. Cavitte, and L. Zhang, 2021: Can we reconstruct the formation of large open ocean polynyas in the Southern Ocean using ice core records? Climate Past, 17, 111131, https://doi.org/10.5194/cp-17-111-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1978: Deep Antarctic convection west of Maud Rise. J. Phys. Oceanogr., 8, 600612, https://doi.org/10.1175/1520-0485(1978)008<0600:DACWOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952977, https://doi.org/10.1175/JCLI-D-14-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haumann, F. A., N. Gruber, M. Münnich, I. Frenger, and S. Kern, 2016: Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 537, 8992, https://doi.org/10.1038/nature19101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., M. Winton, G. Vecchi, L. Jia, and M. Rugenstein, 2017: Transient climate sensitivity depends on base climate ocean circulation. J. Climate, 30, 14931504, https://doi.org/10.1175/JCLI-D-16-0581.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, https://doi.org/10.1038/ngeo1627.

  • Huang, B., C. Liu, G. Ren, H.-M. Zhang, and L. Zhang, 2019: The role of buoy and Argo observations in two SST analyses in the global and tropical Pacific oceans. J. Climate, 32, 25172535, https://doi.org/10.1175/JCLI-D-18-0368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, W. M., S. Yeager, P. Chang, and G. Danabasoglu, 2018: Low-frequency North Atlantic climate variability in the Community Earth System Model large ensemble. J. Climate, 31, 787813, https://doi.org/10.1175/JCLI-D-17-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., D. Volkov, H. Lopez, W. G. Cheon, A. L. Gordon, Y. Liu, and R. Wanninkhof, 2017: Wind-driven ocean dynamics impact on the contrasting sea-ice trends around West Antarctica. J. Geophys. Res. Oceans, 122, 44134430, https://doi.org/10.1002/2016JC012416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., D. M. Holland, E. P. Gerber, and C. Yoo, 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538542, https://doi.org/10.1038/nature12945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., J. Lu, S.-P. Xie, A. Fedorov, W. Liu, J. Lu, S.-P. Xie, and A. Fedorov, 2018: Southern Ocean heat uptake, re-distribution, and storage in a warming climate: The role of meridional overturning circulation. J. Climate, 31, 47274743, https://doi.org/10.1175/JCLI-D-17-0761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lockwood, J. W., C. O. Dufour, S. M. Griffies, and M. Winton, 2021: On the role of the Antarctic Slope Front on the occurrence of the Weddell Sea polynya under climate change. J. Climate, 34, 25292548, https://doi.org/10.1175/JCLI-D-20-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. R. Scott, K. C. Armour, J.-M. Campin, M. Kelley, and A. Romanou, 2015: The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 22872299, https://doi.org/10.1007/s00382-014-2308-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., 1991: Open ocean convection in the Southern Ocean. Deep Convection and Deep Water Formation in the Oceans. J. C. Gascard and P. C. Chu, Eds., Elsevier, 3752.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, C. M. Bitz, C. T. Y. Chung, and H. Teng, 2016: Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci., 9, 590595, https://doi.org/10.1038/ngeo2751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohrmann, M., C. Heuzé, and S. Swart, 2021: Southern Ocean polynyas in CMIP6 models. Cryosphere Discuss., 15, 42814313, https://doi.org/10.5194/tc-15-4281-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., and A. M. Hogg, 2013: On the relationship between Southern Ocean overturning and ACC transport. J. Phys. Oceanogr., 43, 140148, https://doi.org/10.1175/JPO-D-12-057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., G. C. Johnson, and J. L. Bullister, 1999: Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr., 43, 55109, https://doi.org/10.1016/S0079-6611(99)00004-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2019: A 40‐y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl. Acad. Sci. USA, 116, 14 41414 423, https://doi.org/10.1073/pnas.1906556116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauling, A. G., C. M. Bitz, I. J. Smith, and P. J. Langhorne, 2016: The response of the Southern Ocean and Antarctic sea ice to freshwater from ice shelves in an Earth system model. J. Climate, 29, 16551672, https://doi.org/10.1175/JCLI-D-15-0501.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and K. L. Smith, 2013: Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys. Res. Lett., 40, 31953199, https://doi.org/10.1002/grl.50578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purich, A., and Coauthors, 2016: Tropical Pacific SST drivers of recent Antarctic sea ice trends. J. Climate, 29, 89318948, https://doi.org/10.1175/JCLI-D-16-0440.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2012: Global contraction of Antarctic Bottom Water between the 1980s and 2000s. J. Climate, 25, 58305844, https://doi.org/10.1175/JCLI-D-11-00612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Climate, 26, 61056122, https://doi.org/10.1175/JCLI-D-12-00834.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2017: The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change, 42, 153168, https://doi.org/10.1016/j.gloenvcha.2016.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roach, L. A., and Coauthors, 2020: Antarctic sea ice area in CMIP6. Geophys. Res. Lett., 47, e2019GL086729, https://doi.org/10.1029/2019GL086729.

  • Russell, J. L., D. W. Dixon, A. Gnanadesikan, R. J. Stouffer, and J. R. Toggweiler, 2006: The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean. J. Climate, 19, 63826390, https://doi.org/10.1175/JCLI3984.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigman, D. M., and E. A. Boyle, 2000: Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859869, https://doi.org/10.1038/35038000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, H., L. Polvani, and P. Rasch, 2019: Antarctic sea ice expansion, driven by internal variability, in the presence of increasing atmospheric CO2. Geophys. Res. Lett., 46, 14 76214 771, https://doi.org/10.1029/2019GL083758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., and L. M. Polvani, 2016: Highly significant responses to anthropogenic forcings of the midlatitude jet in the Southern Hemisphere. J. Climate, 29, 34633470, https://doi.org/10.1175/JCLI-D-16-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2013: The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys. Res. Lett., 40, 43284332, https://doi.org/10.1002/grl.50820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2009: Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 36, L08502, https://doi.org/10.1029/2009GL037524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., J. S. Hosking, T. J. Bracegirdle, G. J. Marshall, and T. Phillips, 2015: Recent changes in Antarctic sea ice. Philos. Trans. Roy. Soc. London, A373, 20140163, https://doi.org/10.1098/rsta.2014.0163.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, https://doi.org/10.1175/JCLI-D-14-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, S.-K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, https://doi.org/10.1038/nclimate2118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanowski, H., R. Hallberg, and J. L. Sarmiento, 2015: Abyssal ocean warming and salinification after Weddell polynyas in the GFDL CM2G coupled climate model. J. Phys. Oceanogr., 45, 27552772, https://doi.org/10.1175/JPO-D-15-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. L. Delworth, 2016: Impact of the Antarctic bottom water formation on the Weddell Gyre and its northward propagation characteristics in GFDL model. J. Geophys. Res. Oceans, 121, 58255846, https://doi.org/10.1002/2016JC011790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., T. L. Delworth, and L. Jia, 2017: Diagnosis of decadal predictability of Southern Ocean sea surface temperature in the GFDL CM2.1 model. J. Climate, 30, 63096328, https://doi.org/10.1175/JCLI-D-16-0537.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., T. L. Delworth, W. Cooke, and X. Yang, 2019: Natural variability of Southern Ocean convection as a driver of observed climate trends. Nat. Climate Change, 9, 5965, https://doi.org/10.1038/s41558-018-0350-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., T. L. Delworth, W. Cooke, H. Goosse, M. Bushuk, Y. Morioka, and X. Yang, 2021: The dependence of internal multidecadal variability in the Southern Ocean on the ocean background mean state. J. Climate, 34, 10611080, https://doi.org/10.1175/JCLI-D-20-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2010: Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys. Res. Lett., 37, L16703, https://doi.org/10.1029/2010GL044474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018a: The GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulation characteristics with prescribed SSTs. J. Adv. Model. Earth Syst., 10, 691734, https://doi.org/10.1002/2017MS001208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018b: The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies. J. Adv. Model. Earth Syst., 10, 735769, https://doi.org/10.1002/2017MS001209.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 526 0 0
Full Text Views 3174 1624 102
PDF Downloads 626 141 11