Distinct Off-Equatorial Zonal Wind Stress and Oceanic Responses for EP- and CP-Type ENSO Events

Shayne McGregor aSchool of Earth Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
bCentre of Excellence for Climate Extremes, Monash University, Melbourne, Victoria, Australia

Search for other papers by Shayne McGregor in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3222-7042
,
Dietmar Dommenget aSchool of Earth Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
bCentre of Excellence for Climate Extremes, Monash University, Melbourne, Victoria, Australia

Search for other papers by Dietmar Dommenget in
Current site
Google Scholar
PubMed
Close
, and
Sonja Neske aSchool of Earth Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
cGEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Search for other papers by Sonja Neske in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study utilizes observations and a series of idealized experiments to explore whether eastern Pacific (EP)- and central Pacific (CP)-type El Niño–Southern Oscillation (ENSO) events produce surface wind stress responses with distinct spatial structures. We find that the meridionally broader sea surface temperatures (SSTs) during CP events lead to zonal wind stresses that are also meridionally broader than those found during EP-type events, leading to differences in the near-equatorial wind stress curl. These wind spatial structure differences create differences in the associated pre- and post-ENSO event WWV response. For instance, the meridionally narrow winds found during EP events have (i) weaker wind stresses along 5°N and 5°S, leading to weaker Ekman-induced pre-event WWV changes; and (ii) stronger near-equatorial wind stress curls that lead to a much larger post-ENSO event WWV changes than during CP events. The latter suggests that, in the framework of the recharge oscillator model, the EP events have stronger coupling between sea surface temperatures (SST) and thermocline (WWV), supporting more clearly the phase transition of ENSO events, and therefore, the oscillating nature of ENSO than CP events. The results suggest that the spatial structure of the SST pattern and the related differences in the wind stress curl, are required along with equatorial wind stress to accurately model the WWV changes during EP- and CP-type ENSO events.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shayne McGregor, shayne.mcgregor@monash.edu

Abstract

This study utilizes observations and a series of idealized experiments to explore whether eastern Pacific (EP)- and central Pacific (CP)-type El Niño–Southern Oscillation (ENSO) events produce surface wind stress responses with distinct spatial structures. We find that the meridionally broader sea surface temperatures (SSTs) during CP events lead to zonal wind stresses that are also meridionally broader than those found during EP-type events, leading to differences in the near-equatorial wind stress curl. These wind spatial structure differences create differences in the associated pre- and post-ENSO event WWV response. For instance, the meridionally narrow winds found during EP events have (i) weaker wind stresses along 5°N and 5°S, leading to weaker Ekman-induced pre-event WWV changes; and (ii) stronger near-equatorial wind stress curls that lead to a much larger post-ENSO event WWV changes than during CP events. The latter suggests that, in the framework of the recharge oscillator model, the EP events have stronger coupling between sea surface temperatures (SST) and thermocline (WWV), supporting more clearly the phase transition of ENSO events, and therefore, the oscillating nature of ENSO than CP events. The results suggest that the spatial structure of the SST pattern and the related differences in the wind stress curl, are required along with equatorial wind stress to accurately model the WWV changes during EP- and CP-type ENSO events.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shayne McGregor, shayne.mcgregor@monash.edu
Save
  • Abellán, E., and S. McGregor, 2016: The role of the southward wind shift in both, the seasonal synchronization and duration of ENSO events. Climate Dyn., 47, 509527, https://doi.org/10.1007/s00382-015-2853-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 4164, https://doi.org/10.22499/2.6301.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunge, L., and A. J. Clarke, 2014: On the warm water volume and its changing relationship with ENSO. J. Phys. Oceanogr., 44, 13721385, https://doi.org/10.1175/JPO-D-13-062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgers, G., F. F. Jin, and G. J. van Oldenborgh, 2005: The simplest ENSO recharge oscillator. Geophys. Res. Lett., 32, L13706, https://doi.org/10.1029/2005GL022951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., A. Wittenberg, and S. Masina, 2006: Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modell., 15, 274298, https://doi.org/10.1016/j.ocemod.2006.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., C. Deser, A. S. Phillips, Y. Okumura, and S. M. Larson, 2020: ENSO and Pacific decadal variability in the community Earth System Model version 2. J. Adv. Model. Earth Syst., 12, e2019MS002022, https://doi.org/10.1029/2019MS002022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., M. A. Cane, A. T. Wittenberg, and D. Chen, 2017: ENSO in the CMIP5 simulations: Life cycles, diversity, and responses to climate change. J. Climate, 30, 775801, https://doi.org/10.1175/JCLI-D-15-0901.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 2008: An Introduction to the Dynamics of El Niño and the Southern Oscillation. Academic Press, 324 pp.

  • Clarke, A. J., S. Van Gorder, and G. Colantuono, 2007: Wind stress curl and ENSO discharge/recharge in the equatorial Pacific. J. Phys. Oceanogr., 37, 10771091, https://doi.org/10.1175/JPO3035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 17591782, https://doi.org/10.1256/qj.04.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841, https://doi.org/10.1002/qj.493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., M. P. Hoerling, and J. K. Eischeid, 2002: ENSO variability, teleconnections and climate change. Int. J. Climatol., 21, 18451862, https://doi.org/10.1002/joc.631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., and C. Deser, 2014: Nonlinear controls on the persistence of La Niña. J. Climate, 27, 73357355, https://doi.org/10.1175/JCLI-D-14-00033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño–Southern Oscillation. Climate Dyn., 40, 28252847, https://doi.org/10.1007/s00382-012-1475-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 1999: The role of longwave radiation and boundary layer thermodynamics in forcing tropical surface winds. J. Climate, 12, 10491069, https://doi.org/10.1175/1520-0442(1999)012<1049:TROLRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frauen, C., and D. Dommenget, 2010: El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys. Res. Lett., 37, L18801, https://doi.org/10.1029/2010GL044444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frauen, C., D. Dommenget, N. Tyrrell, M. Rezny, and S. Wales, 2014: Analysis of the nonlinearity of El Niño–Southern Oscillation teleconnections. J. Climate, 27, 62256244, https://doi.org/10.1175/JCLI-D-13-00757.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., and A. Gershunov, 2020: Impact of El Niño on weather and climate extremes. El Niño Southern Oscillation in a Changing Climate, M. J. McPhaden, A. Santoso, and W. Cai, Eds., Amer. Geophys. Union, 361375, https://doi.org/10.1002/9781119548164.ch16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Im, S.-H., S.-I. An, S. T. Kim, and F.-F. Jin, 2015: Feedback processes responsible for El Niño–La Niña amplitude asymmetry. Geophys. Res. Lett., 42, 55565563, https://doi.org/10.1002/2015GL064853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., M. Lengaigne, J. Vialard, I. Suresh, and Y. Planton, 2019: On the physical interpretation of the lead relation between warm water volume and the El Niño–Southern Oscillation. Climate Dyn., 52, 29232942, https://doi.org/10.1007/s00382-018-4313-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29, 2125, https://doi.org/10.1029/2002GL015924.

  • Kirtman, B. P., 1997: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Climate, 10, 16901704, https://doi.org/10.1175/1520-0442(1997)010<1690:ORWDAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J. S., F. F. Jin, and S. Il An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J. S., J. Choi, S. Il An, and F. F. Jin, 2010: Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J. Climate, 23, 12261239, https://doi.org/10.1175/2009JCLI3293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., S. F. Milton, C. A. Senior, M. E. Brooks, S. Ineson, T. Reichler, and J. Kim, 2010: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J. Climate, 23, 59335957, https://doi.org/10.1175/2010JCLI3541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev., 4, 723757, https://doi.org/10.5194/gmd-4-723-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., N. J. Holbrook, and S. B. Power, 2007: Interdecadal sea surface temperature variability in the equatorial Pacific Ocean. Part I: The role of off-equatorial wind stresses and oceanic Rossby waves. J. Climate, 20, 26432658, https://doi.org/10.1175/JCLI4145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, N. Schneider, M. F. Stuecker, and M. H. England, 2012: The effect of the South Pacific convergence zone on the termination of El Niño events and the meridional asymmetry of ENSO. J. Climate, 25, 55665586, https://doi.org/10.1175/JCLI-D-11-00332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., N. Ramesh, P. Spence, M. H. England, M. J. McPhaden, and A. Santoso, 2013a: Meridional movement of wind anomalies during ENSO events and their role in event termination. Geophys. Res. Lett., 40, 749754, https://doi.org/10.1002/grl.50136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. H. England, O. Elison Timm, and A. T. Wittenberg, 2013b: Inferred changes in El Niño–Southern Oscillation variance over the past six centuries. Climate Past, 9, 22692284, https://doi.org/10.5194/cp-9-2269-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, https://doi.org/10.1029/2012GL051826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, https://doi.org/10.1029/2011GL048275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559, https://doi.org/10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2001: Interannual variability in warm water volume transports in the equatorial Pacific during 1993–99. J. Phys. Oceanogr., 31, 13241345, https://doi.org/10.1175/1520-0485(2001)031<1324:IVIWWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neske, S., and S. McGregor, 2018: Understanding the warm water volume precursor of ENSO events and its interdecadal variation. Geophys. Res. Lett., 45, 15771585, https://doi.org/10.1002/2017GL076439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neske, S., S. McGregor, M. Zeller, and D. Dommenget, 2021: Wind spatial structure triggers ENSO’s oceanic warm water volume changes. J. Climate, 34, 19851999, https://doi.org/10.1175/JCLI-D-20-0040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., M. Ohba, C. Deser, and H. Ueda, 2011: A proposed mechanism for the asymmetric duration of El Niño and La Niña. J. Climate, 24, 38223829, https://doi.org/10.1175/2011JCLI3999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picaut, J., F. Masia, and Y. du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663666, https://doi.org/10.1126/science.277.5326.663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Planton, Y., J. Vialard, E. Guilyardi, M. Lengaigne, and T. Izumo, 2018: Western Pacific Oceanic heat content: A better predictor of La Niña than of El Niño. Geophys. Res. Lett., 45, 98249833, https://doi.org/10.1029/2018GL079341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010: Interannual-to-decadal variability in the bifurcation of the north equatorial current off the Philippines. J. Phys. Oceanogr., 40, 25252538, https://doi.org/10.1175/2010JPO4462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, and D. P. Rowell, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., and F.-F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 65066523, https://doi.org/10.1175/JCLI-D-12-00601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santoso, A., and Coauthors, 2019: Dynamics and predictability of El Niño–Southern oscillation: An Australian perspective on progress and challenges. Bull. Amer. Meteor. Soc., 100, 403420, https://doi.org/10.1175/BAMS-D-18-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, A., and T. Delcroix, 2013: Eastern and Central Pacific ENSO and their relationships to the recharge/discharge oscillator paradigm. Deep-Sea Res. I, 82, 3243, https://doi.org/10.1016/j.dsr.2013.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, N. R., 1995: The BMRC ocean thermal analysis system. Aust. Meteor. Mag., 44, 93110.

  • Sprintall, J., S. Cravatte, B. Dewitte, Y. Du, and A. Sen Gupta, 2020: ENSO oceanic teleconnections. El Niño Southern Oscillation in a Changing Climate, M. J. McPhaden, A. Santoso, and W. Cai, Eds., Amer. Geophys. Union, 337359, https://doi.org/10.1002/9781119548164.ch15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, S. McGregor, and H.-L. Ren, 2013: A combination mode of the annual cycle and the El Niño/southern oscillation. Nat. Geosci., 6, 540544, https://doi.org/10.1038/ngeo1826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., F.-F. Jin, A. Timmermann, and S. McGregor, 2015: Combination mode dynamics of the anomalous northwest Pacific anticyclone. J. Climate, 28, 10931111, https://doi.org/10.1175/JCLI-D-14-00225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., F.-F. Jin, A. Timmermann, and S. McGregor, 2016: Reply to “Comments on ‘Combination mode dynamics of the anomalous northwest Pacific anticyclone.’” J. Climate, 29, 46954706, https://doi.org/10.1175/JCLI-D-15-0558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., R. R. Rodrigues, G. A. Meehl, S. McGregor, and M. H. England, 2016a: How sensitive are the Pacific–tropical North Atlantic teleconnections to the position and intensity of El Niño-related warming? Climate Dyn., 46, 18411860, https://doi.org/10.1007/s00382-015-2679-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., R. R. Rodrigues, G. A. Meehl, S. McGregor, and M. H. England, 2016b: How sensitive are the Pacific–tropical North Atlantic teleconnections to the position and intensity of El Niño-related warming? Climate Dyn., 46, 18411860, https://doi.org/10.1007/s00382-015-2679-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., C. C. Ummenhofer, M. F. Stuecker, D. Dommenget, K. Ashok, R. R. Rodrigues, and S.-W. Yeh, 2020: ENSO atmospheric teleconnections. El Niño Southern Oscillation in a Changing Climate, M. J. McPhaden, A. Santoso, and W. Cai, Eds., Amer. Geophys. Union, 309335, https://doi.org/10.1002/9781119548164.ch14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2019: Author correction: El Niño–Southern Oscillation complexity. Nature, 567, E3, https://doi.org/10.1038/s41586-019-0994-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and J. Picaut, 2004: Understanding ENSO Physics—A Review. Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 2148.

  • Weisberg, R. H., and C. Wang, 1997: A Western Pacific oscillator paradigm for the El Niño–Southern Oscillation. Geophys. Res. Lett., 24, 779782, https://doi.org/10.1029/97GL00689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572584, https://doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X., R. J. Greatbatch, and M. Claus, 2017: Interannual variability of tropical Pacific sea level from 1993 to 2014. J. Geophys. Res. Oceans, 122, 602616, https://doi.org/10.1002/2016JC012347.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 518 0 0
Full Text Views 1751 1202 53
PDF Downloads 690 189 14