Adiabatic and Diabatic Signatures of Ocean Temperature Variability

R. M. Holmes aClimate Change Research Centre, University of New South Wales, Sydney, Australia
bAustralian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, Australia
cSchool of Mathematics and Statistics, University of New South Wales, Sydney, Australia

Search for other papers by R. M. Holmes in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6799-9109
,
T. Sohail cSchool of Mathematics and Statistics, University of New South Wales, Sydney, Australia

Search for other papers by T. Sohail in
Current site
Google Scholar
PubMed
Close
, and
J. D. Zika cSchool of Mathematics and Statistics, University of New South Wales, Sydney, Australia

Search for other papers by J. D. Zika in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Anthropogenically induced radiative imbalances in the climate system lead to a slow accumulation of heat in the ocean. This warming is often obscured by natural modes of climate variability such as El Niño–Southern Oscillation (ENSO), which drive substantial ocean temperature changes as a function of depth and latitude. The use of watermass coordinates has been proposed to help isolate forced signals and filter out fast adiabatic processes associated with modes of variability. However, how much natural modes of variability project into these different coordinate systems has not been quantified. Here we apply a rigorous framework to quantify ocean temperature variability using both a quasi-Lagrangian, watermass-based temperature coordinate and Eulerian depth and latitude coordinates in a free-running climate model under preindustrial conditions. The temperature-based coordinate removes the adiabatic component of ENSO-dominated interannual variability by definition, but a substantial diabatic signal remains. At slower (decadal to centennial) frequencies, variability in the temperature- and depth-based coordinates is comparable. Spectral analysis of temperature tendencies reveals the dominance of advective processes in latitude and depth coordinates while the variability in temperature coordinates is related closely to the surface forcing. Diabatic mixing processes play an important role at slower frequencies where quasi-steady-state balances emerge between forcing and mixing in temperature, advection and mixing in depth, and forcing and advection in latitude. While watermass-based analyses highlight diabatic effects by removing adiabatic variability, our work shows that natural variability has a strong diabatic component and cannot be ignored in the analysis of long-term trends.

Significance Statement

Quantifying the ocean warming associated with anthropogenically induced radiative imbalances in the climate system can be challenging due to the superposition with modes of internal climate variability such as El Niño. One method proposed to address this issue is the analysis of temperature changes in fluid-following (or “watermass”) coordinates that filter out fast adiabatic processes associated with these modes of variability. In this study we compare a watermass-based analysis with more traditional analyses of temperature changes at fixed depth and latitude to show that even natural modes of climate variability exhibit a substantial signal in watermass coordinates, particularly at decadal and slower frequencies. This natural variability must be taken into account when analyzing long-term temperature trends in the ocean.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Holmes current affiliation: School of Geosciences, University of Sydney, Sydney, Australia.

Corresponding author: Ryan Holmes, r.holmes@sydney.edu.au

Abstract

Anthropogenically induced radiative imbalances in the climate system lead to a slow accumulation of heat in the ocean. This warming is often obscured by natural modes of climate variability such as El Niño–Southern Oscillation (ENSO), which drive substantial ocean temperature changes as a function of depth and latitude. The use of watermass coordinates has been proposed to help isolate forced signals and filter out fast adiabatic processes associated with modes of variability. However, how much natural modes of variability project into these different coordinate systems has not been quantified. Here we apply a rigorous framework to quantify ocean temperature variability using both a quasi-Lagrangian, watermass-based temperature coordinate and Eulerian depth and latitude coordinates in a free-running climate model under preindustrial conditions. The temperature-based coordinate removes the adiabatic component of ENSO-dominated interannual variability by definition, but a substantial diabatic signal remains. At slower (decadal to centennial) frequencies, variability in the temperature- and depth-based coordinates is comparable. Spectral analysis of temperature tendencies reveals the dominance of advective processes in latitude and depth coordinates while the variability in temperature coordinates is related closely to the surface forcing. Diabatic mixing processes play an important role at slower frequencies where quasi-steady-state balances emerge between forcing and mixing in temperature, advection and mixing in depth, and forcing and advection in latitude. While watermass-based analyses highlight diabatic effects by removing adiabatic variability, our work shows that natural variability has a strong diabatic component and cannot be ignored in the analysis of long-term trends.

Significance Statement

Quantifying the ocean warming associated with anthropogenically induced radiative imbalances in the climate system can be challenging due to the superposition with modes of internal climate variability such as El Niño. One method proposed to address this issue is the analysis of temperature changes in fluid-following (or “watermass”) coordinates that filter out fast adiabatic processes associated with these modes of variability. In this study we compare a watermass-based analysis with more traditional analyses of temperature changes at fixed depth and latitude to show that even natural modes of climate variability exhibit a substantial signal in watermass coordinates, particularly at decadal and slower frequencies. This natural variability must be taken into account when analyzing long-term temperature trends in the ocean.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Holmes current affiliation: School of Geosciences, University of Sydney, Sydney, Australia.

Corresponding author: Ryan Holmes, r.holmes@sydney.edu.au
Save
  • Allison, L. C., C. D. Roberts, M. D. Palmer, L. Hermanson, R. E. Killick, N. A. Rayner, D. M. Smith, and M. B. Andrews, 2019: Towards quantifying uncertainty in ocean heat content changes using synthetic profiles. Environ. Res. Lett., 14, 084037, https://doi.org/10.1088/1748-9326/ab2b0b.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ault, T. R., J. E. Cole, and S. St. George, 2012: The amplitude of decadal to multidecadal variability in precipitation simulated by state-of-the-art climate models. Geophys. Res. Lett., 39, L21705, https://doi.org/10.1029/2012GL053424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2020: Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. J. South. Hemisphere Earth Syst. Sci., 70, 225251, https://doi.org/10.1071/ES19040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and T. J. McDougall, 1994: Diagnosing climate change and ocean ventilation using hydrographic data. J. Phys. Oceanogr., 24, 11371152, https://doi.org/10.1175/1520-0485(1994)024<1137:DCCAOV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., W. E. Johns, B. A. King, G. McCarthy, E. L. McDonagh, B. I. Moat, and D. A. Smeed, 2020: Reduction in ocean heat transport at 26°N since 2008 cools the eastern subpolar gyre of the North Atlantic Ocean. J. Climate, 33, 16771689, https://doi.org/10.1175/JCLI-D-19-0323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and S. E. Zebiak, 1985: A theory for El Niño and the Southern Oscillation. Science, 228, 10851087, https://doi.org/10.1126/science.228.4703.1085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. E. Trenberth, J. T. Fasullo, M. Mayer, M. Balmaseda, and J. Zhu, 2019: Evolution of ocean heat content related to ENSO. J. Climate, 32, 35293556, https://doi.org/10.1175/JCLI-D-18-0607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2012: Multicentennial variability of the Atlantic meridional overturning circulation and its climatic influence in a 4000 year simulation of the GFDL CM2.1 climate model. Geophys. Res. Lett., 39, L13702, https://doi.org/10.1029/2012GL052107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deppenmeier, A.-L., F. O. Bryan, W. Kessler, and L. Thompson, 2021: Modulation of cross-isothermal velocities with ENSO in the tropical Pacific cold tongue. J. Phys. Oceanogr., 51, 15591574, https://doi.org/10.1175/JPO-D-20-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbruyères, D., E. L. McDonagh, B. A. King, and V. Thierry, 2017: Global and full-depth ocean temperature trends during the early twenty-first century from Argo and repeat hydrography. J. Climate, 30, 19851997, https://doi.org/10.1175/JCLI-D-16-0396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias, F. B., C. M. Domingues, S. J. Marsland, S. Griffies, S. Rintoul, R. Matear, and R. Fiedler, 2020: On the superposition of mean advective and eddy-induced transports in global ocean heat and salt budgets. J. Climate, 33, 11211140, https://doi.org/10.1175/JCLI-D-19-0418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. T. Sutton, 2005: Mechanism of interdecadal thermohaline circulation variability in a coupled ocean: Atmosphere GCM. J. Climate, 18, 11171135, https://doi.org/10.1175/JCLI3328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., A. Blaker, S. Josey, A. Nurser, B. Sinha, and M. Balmaseda, 2014: Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett., 41, 78687874, https://doi.org/10.1002/2014GL061456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., S. McGregor, and M. H. England, 2015: Robustness of the modes of indo-Pacific sea level variability. Climate Dyn., 45, 12811298, https://doi.org/10.1007/s00382-014-2377-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16, 501515, https://doi.org/10.1007/s003820000059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2012: Elements of the Modular Ocean Model (MOM). GFDL Ocean Group Tech. Rep. 7, NOAA/Geophysical Fluid Dynamics Laboratory, 620 pp.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., A. Gnanadesikan, R. C. Pacanowski, V. Larichev, J. K. Dukowicz, and R. D. Smith, 1998: Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28, 805830, https://doi.org/10.1175/1520-0485(1998)028<0805:IDIAZC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952977, https://doi.org/10.1175/JCLI-D-14-00353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hieronymus, M., and J. Nycander, 2020: Interannual variability of the overturning and energy transport in the atmosphere and ocean during the late twentieth century with implications for precipitation and sea level. J. Climate, 33, 317338, https://doi.org/10.1175/JCLI-D-19-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hieronymus, M., J. Nilsson, and J. Nycander, 2014: Water mass transformation in salinity-temperature space. J. Phys. Oceanogr., 44, 25472568, https://doi.org/10.1175/JPO-D-13-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., J. D. Zika, and M. H. England, 2019: Diathermal heat transport in a global ocean model. J. Phys. Oceanogr., 49, 141161, https://doi.org/10.1175/JPO-D-18-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., J. D. Zika, S. M. Griffies, A. M. Hogg, A. E. Kiss, and M. H. England, 2021a: The geography of numerical mixing in a suite of global ocean models. J. Adv. Model. Earth Syst., 13, e2020MS002333, https://doi.org/10.1029/2020MS002333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., T. Sohail, and J. Zika, 2021b: Adiabatic and diabatic signatures of ocean temperature variability—ACCESS-CM2 processing/plotting code and processed data. Zenodo, https://dx.doi.org/10.5281/zenodo.5728574.

    • Search Google Scholar
    • Export Citation
  • Huguenin, M. F., R. M. Holmes, and M. H. England, 2020: Key role of diabatic processes in regulating warm water volume variability over ENSO events. J. Climate, 33, 99459964, https://doi.org/10.1175/JCLI-D-20-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irving, D., W. Hobbs, J. Church, and J. Zika, 2020: A mass and energy conservation analysis of drift in the CMIP6 ensemble. J. Climate, 34, 31573170, https://doi.org/10.1175/JCLI-D-20-0281.1.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39, 385411, https://doi.org/10.1029/2000RG000084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., 2009: Impact of latitudinal variations in vertical diffusivity on climate simulations. J. Geophys. Res., 114, C01010, https://doi.org/10.1029/2008JC005030.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and A. N. Birnbaum, 2017: As El Niño builds, Pacific warm pool expands, ocean gains more heat. Geophys. Res. Lett., 44, 438445, https://doi.org/10.1002/2016GL071767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kociuba, G., and S. B. Power, 2015: Inability of CMIP5 models to simulate recent strengthening of the Walker circulation: Implications for projections. J. Climate, 28, 2035, https://doi.org/10.1175/JCLI-D-13-00752.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2016: The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat. Geosci., 9, 669673, https://doi.org/10.1038/ngeo2770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, N., M. England, A. Sen Gupta, and P. Spence, 2017: Role of the Pacific trade winds in driving ocean temperatures during the recent hiatus and projections for a wind reversal. Climate Dyn., 51, 321336, https://doi.org/10.1007/s00382-017-3923-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, M., L. Haimberger, and M. A. Balmaseda, 2014: On the energy exchange between tropical ocean basins related to ENSO. J. Climate, 27, 63936403, https://doi.org/10.1175/JCLI-D-14-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, M., J. T. Fasullo, K. E. Trenberth, and L. Haimberger, 2016: ENSO-driven energy budget perturbations in observations and CMIP models. Climate Dyn., 47, 40094029, https://doi.org/10.1007/s00382-016-3057-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 2003: Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr., 33, 945963, https://doi.org/10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG127, 28 pp.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., P. Spence, F. U. Schwarzkopf, M. H. England, A. Santoso, W. S. Kessler, A. Timmermann, and C. W. Boning, 2014: ENSO-driven interhemispheric Pacific mass transports. J. Geophys. Res. Oceans, 119, 62216237, https://doi.org/10.1002/2014JC010286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menary, M. B., W. Park, K. Lohmann, M. Vellinga, M. D. Palmer, M. Latif, and J. H. Jungclaus, 2012: A multimodel comparison of centennial Atlantic meridional overturning circulation variability. Climate Dyn., 38, 23772388, https://doi.org/10.1007/s00382-011-1172-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., O. A. Saenko, A. M. Hogg, and P. Spence, 2013: The role of vertical eddy flux in Southern Ocean heat uptake. Geophys. Res. Lett., 40, 54455450, https://doi.org/10.1002/2013GL057706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Oldenburg, D., R. C. J. Wills, K. C. Armour, L. Thompson, and L. C. Jackson, 2021: Mechanisms of low-frequency variability in North Atlantic Ocean heat transport and AMOC. J. Climate, 34, 47334755, https://doi.org/10.1175/JCLI-D-20-0614.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., and K. Haines, 2009: Estimating oceanic heat content change using isotherms. J. Climate, 22, 49534969, https://doi.org/10.1175/2009JCLI2823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., and D. J. McNeall, 2014: Internal variability of Earth’s energy budget simulated by CMIP5 climate models. Environ. Res. Lett., 9, 034016, https://doi.org/10.1088/1748-9326/9/3/034016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., K. Haines, S. F. B. Tett, and T. J. Ansell, 2007: Isolating the signal of ocean global warming. Geophys. Res. Lett., 34, L23610, https://doi.org/10.1029/2007GL031712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., S. A. Good, K. Haines, N. A. Rayner, and P. A. Stott, 2009: A new perspective on warming of the global oceans. Geophys. Res. Lett., 36, L20709, https://doi.org/10.1029/2009GL039491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, W., and M. Latif, 2008: Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys. Res. Lett., 35, L22703, https://doi.org/10.1029/2008GL035779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rathore, S., N. L. Bindoff, H. E. Phillips, and M. Feng, 2020: Recent hemispheric asymmetry in global ocean warming induced by climate change and internal variability. Nat. Commun., 11, 2008, https://doi.org/10.1038/s41467-020-15754-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., M. D. Palmer, R. P. Allan, D. Desbruyeres, P. Hyder, C. Liu, and D. Smith, 2017: Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content. J. Geophys. Res. Oceans, 122, 726744, https://doi.org/10.1002/2016JC012278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2011: The global ocean imprint of ENSO. Geophys. Res. Lett., 38, L13606, https://doi.org/10.1029/2011GL047992.

  • Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, https://doi.org/10.1038/nclimate2513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savita, A., J. D. Zika, C. M. Domingues, S. J. Marsland, G. D. Evans, F. B. Dias, R. M. Holmes, and A. M. Hogg, 2021: Super residual circulation: A new perspective on ocean vertical heat transport. J. Phys. Oceanogr., 51, 24432462, https://doi.org/10.1175/JPO-D-21-0008.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. S. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, https://doi.org/10.1016/S1463-5003(03)00011-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohail, T., D. B. Irving, J. D. Zika, R. M. Holmes, and J. A. Church, 2021: Fifty year trends in global ocean heat content traced to surface heat fluxes in the sub-polar ocean. Geophys. Res. Lett., 48, e2020GL091439, https://doi.org/10.1029/2020GL091439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, H., 1971: On the representation of isentropic mixing in ocean circulation models. J. Phys. Oceanogr., 1, 233234, https://doi.org/10.1175/1520-0485(1971)001<0233:OTROIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevenson, J. W., and P. P. Niiler, 1983: Upper ocean heat budget during the Hawaii-to-Tahiti shuttle experiment. J. Phys. Oceanogr., 13, 18941907, https://doi.org/10.1175/1520-0485(1983)013<1894:UOHBDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., H.-M. Zhang, and M. J. Caruso, 2004: Time-dependent internal energy budgets of the tropical warm water pools. J. Climate, 17, 13981410, https://doi.org/10.1175/1520-0442(2004)017<1398:TIEBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2020: ENSO in the global climate system. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 2137, https://doi.org/10.1002/9781119548164.ch2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443, https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, K. von Schuckmann, and L. Cheng, 2016: Insights into Earth’s energy imbalance from multiple sources. J. Climate, 29, 74957505, https://doi.org/10.1175/JCLI-D-16-0339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and Coauthors, 2020: Heat stored in the Earth system: Where does the energy go? Earth Syst. Sci. Data, 12, 20132041, https://doi.org/10.5194/essd-12-2013-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, S. J., and J. N. Moum, 2019: Feedback of mixing to ENSO phase change. Geophys. Res. Lett., 46, 13 92013 927, https://doi.org/10.1029/2019GL085415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., P. Cessi, J. L. McClean, and M. E. Maltrud, 2008: Vertical heat transport in eddying ocean models. Geophys. Res. Lett., 35, L23605, https://doi.org/10.1029/2008GL036138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, X., R. Zhang, and T. R. Knutson, 2018: Underestimated AMOC variability and implications for AMV and predictability in CMIP models. Geophys. Res. Lett., 45, 43194328, https://doi.org/10.1029/2018GL077378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zika, J. D., W. P. Sijp, and M. H. England, 2013: Vertical heat transport by ocean circulation and the role of mechanical and haline forcing. J. Phys. Oceanogr., 43, 20952112, https://doi.org/10.1175/JPO-D-12-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zika, J. D., N. Skliris, A. G. Nurser, S. A. Josey, L. Mudryk, F. Laliberté, and R. Marsh, 2015: Maintenance and broadening of the ocean’s salinity distribution by the water cycle. J. Climate, 28, 95509560, https://doi.org/10.1175/JCLI-D-15-0273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zika, J. D., J. M. Gregory, E. L. McDonagh, A. Marzocchi, and L. Clément, 2021: Recent water mass changes reveal mechanisms of ocean warming. J. Climate, 34, 34613479, https://doi.org/10.1175/JCLI-D-20-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1260 0 0
Full Text Views 3858 2926 55
PDF Downloads 926 179 18