• Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akter, N., and K. Tsuboki, 2014: Role of synoptic-scale forcing in cyclogenesis over the Bay of Bengal. Climate Dyn., 43, 26512662, https://doi.org/10.1007/s00382-014-2077-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anand, A., S. K. Mishra, S. Sahany, M. Bhowmick, J. S. Rawat, and S. K. Dash, 2018: Indian summer monsoon simulations: Usefulness of increasing horizontal resolution, manual tuning, and semi-automatic tuning in reducing present-day model biases. Sci. Rep., 8, 3522, https://doi.org/10.1038/s41598-018-21865-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., M. Branson, Z. Kuang, D. A. Randall, and E. Tziperman, 2015: MJO intensification with warming in the superparameterized CESM. J. Climate, 28, 27062724, https://doi.org/10.1175/JCLI-D-14-00494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and M. Latif, 2002: A cautionary note on the interpretation of EOFs. J. Climate, 15, 216225, https://doi.org/10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eshel, G., 2012: Spatiotemporal Data Analysis. Princeton University Press, 336 pp.

  • Fox-Kemper, B., 2004: Wind-driven barotropic gyre II: Effects of eddies and low interior viscosity. J. Mar. Res., 62, 195232, https://doi.org/10.1357/002224004774201690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, https://doi.org/10.1016/j.ocemod.2010.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and R. S. A. Mohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 11801198, https://doi.org/10.1175/1520-0442(2001)014<1180:IOAIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and P. K. Xavier, 2003: Potential predictability and extended range prediction of Indian summer monsoon breaks. Geophys. Res. Lett., 30, 1996, https://doi.org/10.1029/2003GL017810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., R. S. Ajayamohan, P. K. Xavier, and D. Sengupta, 2003: Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations. Geophys. Res. Lett., 30, 1431, https://doi.org/10.1029/2002GL016734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., S. A. Rao, D. Sengupta, and S. Chakravorty, 2016: Monsoons to mixing in the Bay of Bengal: Multiscale air-sea interactions and monsoon predictability. Oceanography, 29, 1827, https://doi.org/10.5670/oceanog.2016.35.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562, https://doi.org/10.1175/2007JPO3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, K.-Y., and G. R. North, 1999: EOF-based linear prediction algorithm: Examples. J. Climate, 12, 20762092, https://doi.org/10.1175/1520-0442(1999)012<2076:EBLPAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2000: Intraseasonal and interannual variability of rainfall over India. J. Climate, 13, 43664377, https://doi.org/10.1175/1520-0442(2000)013<0001:IAIVOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and P. Ardanuy, 1980: The 10 to 20-day westward propagating mode and “breaks in the monsoons.” Tellus, 32, 1526, https://doi.org/10.1111/j.2153-3490.1980.tb01717.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, S., A. Arora, R. Chattopadhyay, A. Hazra, S. A. Rao, and B. Goswami, 2017: Seminal role of stratiform clouds in large-scale aggregation of tropical rain in boreal summer monsoon intraseasonal oscillations. Climate Dyn., 48, 9991015, https://doi.org/10.1007/s00382-016-3124-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuppam, A. P., and M. Mawsynram, 2019: The South Asian monsoon, past, present and future: A story of famines and trade, science and cupidity. The Economist, https://www.economist.com/essay/2019/06/27/the-south-asian-monsoon-past-present-and-future.

    • Search Google Scholar
    • Export Citation
  • Langmuir, I., 1938: Surface motion of water induced by wind. Science, 87, 119123, https://doi.org/10.1126/science.87.2250.119.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech., 15, 391427, https://doi.org/10.1146/annurev.fl.15.010183.002135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, and Y. Du, 2015: Monsoon-induced biases of climate models over the tropical Indian Ocean. J. Climate, 28, 30583072, https://doi.org/10.1175/JCLI-D-14-00740.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, and Y. Du, 2016: A robust but spurious pattern of climate change in model projections over the tropical Indian Ocean. J. Climate, 29, 55895608, https://doi.org/10.1175/JCLI-D-15-0565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., and B. Fox-Kemper, 2017: Assessing the effects of Langmuir turbulence on the entrainment buoyancy flux in the ocean surface boundary layer. J. Phys. Oceanogr., 47, 28632886, https://doi.org/10.1175/JPO-D-17-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., A. Webb, B. Fox-Kemper, A. Craig, G. Danabasoglu, W. G. Large, and M. Vertenstein, 2016: Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Modell., 103, 145160, https://doi.org/10.1016/j.ocemod.2015.07.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., and Coauthors, 2019: Comparing ocean surface boundary vertical mixing schemes including Langmuir turbulence. J. Adv. Model. Earth Syst., 11, 35453592, https://doi.org/10.1029/2019MS001810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, W. Wang, and M. Ravichandran, 2016: Intraseasonal variability of SST and precipitation in the Arabian Sea during the Indian summer monsoon: Impact of ocean mixed layer depth. J. Climate, 29, 78897910, https://doi.org/10.1175/JCLI-D-16-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, W. Wang, L. Zhang, and M. Ravichandran, 2018: The Indian summer monsoon intraseasonal oscillations in CFSv2 forecasts: Biases and importance of improving air–sea interaction processes. J. Climate, 31, 53515370, https://doi.org/10.1175/JCLI-D-17-0623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and Coauthors, 2016: A tale of two spicy seas. Oceanography, 29, 5061, https://doi.org/10.5670/oceanog.2016.38.

  • McWilliams, J. C., and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull., 6, 225237, https://doi.org/10.1016/S1353-2561(01)00041-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2001: Adaptive filtering and prediction of intraseasonal oscillations. Mon. Wea. Rev., 129, 802817, https://doi.org/10.1175/1520-0493(2001)129<0802:AFAPOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montégut, C. B., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and P. D. Sardeshmukh, 2017: Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures? Geophys. Res. Lett., 44, 85208529, https://doi.org/10.1002/2017GL074088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https:/doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pattanaik, D. R., and Coauthors, 2012: Monthly forecast of Indian southwest monsoon rainfall based on NCEP’s coupled forecast system. Atmos. Climate Sci., 2, 479, https://doi.org/10.4236/acs.2012.24042.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and T. Magorian, 1993: Prediction of Niño-3 sea surface temperatures using linear inverse modeling. J. Climate, 6, 10671076, https:/doi.org/10.1175/1520-0442(1993)006<1067:PONSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramachandran, S., and Coauthors, 2018: Submesoscale processes at shallow salinity fronts in the Bay of Bengal: Observations during the winter monsoon. J. Phys. Oceanogr., 48, 479509, https://doi.org/10.1175/JPO-D-16-0283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samanta, D., S. N. Hameed, D. Jin, V. Thilakan, M. Ganai, S. A. Rao, and M. Deshpande, 2018: Impact of a narrow Coastal Bay of Bengal sea surface temperature front on an Indian summer monsoon simulation. Sci. Rep., 8, 17694, https://doi.org/10.1038/s41598-018-35735-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarkar, S., H. Pham, S. Ramachandran, J. Nash, A. Tandon, J. Buckley, A. Lotliker, and M. Omand, 2016: The interplay between submesoscale instabilities and turbulence in the surface layer of the Bay of Bengal. Oceanography, 29, 146157, https://doi.org/10.5670/oceanog.2016.47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., B. N. Goswami, and R. Senan, 2001: Coherent intraseasonal oscillations of ocean and atmosphere during the Asian Summer Monsoon. Geophys. Res. Lett., 28, 41274130, https://doi.org/10.1029/2001GL013587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spiro Jaeger, G., and A. Mahadevan, 2018: Submesoscale-selective compensation of fronts in a salinity-stratified ocean. Sci. Adv., 4, e1701504, https://doi.org/10.1126/sciadv.1701504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suhas, E., J. M. Neena, and B. N. Goswami, 2013: An Indian Monsoon Intraseasonal Oscillations (MISO) index for real time monitoring and forecast verification. Climate Dyn., 40, 26052616, https://doi.org/10.1007/s00382-012-1462-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, N., and B. Fox-Kemper, 2016: Understanding Stokes forces in the wave-averaged equations. J. Geophys. Res. Oceans, 121, 35793596, https://doi.org/10.1002/2015JC011566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., and W. J. Emery, 2001: Data Analysis Methods in Physical Oceanography. 2nd ed. Elsevier Science, 729 pp.

  • Van Roekel, L., B. Fox-Kemper, P. Sullivan, P. Hamlington, and S. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, https://doi.org/10.1029/2011JC007516.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., and J. S. Nasstrom, 1982: Examples of extended empirical orthogonal function analyses. Mon. Wea. Rev., 110, 481485, https://doi.org/10.1175/1520-0493(1982)110<0481:EOEEOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, J. B., B. Fox-Kemper, D. Mandal, A. D. Nelson, and R. K. Zia, 2019: Nonequilibrium oscillations, probability angular momentum, and the climate system. J. Stat. Phys., 179, 118, https://doi.org/10.1007/s10955-019-02394-1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., X. Song, and Y. Wang, 2019: The double ITCZ syndrome in GCMS: A coupled feedback problem among convection, clouds, atmospheric and ocean circulations. Atmos. Res., 229, 255268, https://doi.org/10.1016/j.atmosres.2019.06.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., W. Han, Y. Li, and E. D. Maloney, 2018: Role of North Indian Ocean air–sea interaction in summer monsoon intraseasonal oscillation. J. Climate, 31, 78857908, https://doi.org/10.1175/JCLI-D-17-0691.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 669 667 25
Full Text Views 105 104 4
PDF Downloads 112 110 5

Evaluating Coupled Climate Model Parameterizations via Skill at Reproducing the Monsoon Intraseasonal Oscillation

View More View Less
  • 1 aDepartment of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island
  • | 2 bThrust of Earth, Ocean and Atmospheric Sciences, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, China
  • | 3 cSchool of Engineering, Brown University, Providence, Rhode Island
Restricted access

Abstract

Empirically generated indices are used to evaluate the skill of a global climate model in representing the monsoon intraseasonal oscillation (MISO). This work adapts the method of Suhas et al., an extended empirical orthogonal function (EEOF) analysis of daily rainfall data with the first orthogonal function indicating MISO strength and phase. This method is applied to observed rainfall and Community Earth System Model (CESM1.2) simulation results. Variants of the CESM1.2 including upper ocean parameterizations for Langmuir turbulence and submesoscale mixed layer eddy restratification are used together with the EEOF analysis to explore sensitivity of the MISO to global upper ocean process representations. The skill with which the model variants recreate the MISO strength and persistence is evaluated versus the observed MISO. While all model versions reproduce the northward rainfall propagation traditionally associated with the MISO, a version including both Langmuir turbulence and submesoscale restratification parameterizations provides the most accurate simulations of the time scale of MISO events.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Orenstein’s current affiliation: Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York.

Johnson’s current affiliation: Applied Physics Laboratory, University of Washington, Seattle, Washington.

Sane’s current affiliation: Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey.

This article is included in the Air-Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics Special Collection.

Corresponding author: Baylor Fox-Kemper, baylor@brown.edu

Abstract

Empirically generated indices are used to evaluate the skill of a global climate model in representing the monsoon intraseasonal oscillation (MISO). This work adapts the method of Suhas et al., an extended empirical orthogonal function (EEOF) analysis of daily rainfall data with the first orthogonal function indicating MISO strength and phase. This method is applied to observed rainfall and Community Earth System Model (CESM1.2) simulation results. Variants of the CESM1.2 including upper ocean parameterizations for Langmuir turbulence and submesoscale mixed layer eddy restratification are used together with the EEOF analysis to explore sensitivity of the MISO to global upper ocean process representations. The skill with which the model variants recreate the MISO strength and persistence is evaluated versus the observed MISO. While all model versions reproduce the northward rainfall propagation traditionally associated with the MISO, a version including both Langmuir turbulence and submesoscale restratification parameterizations provides the most accurate simulations of the time scale of MISO events.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Orenstein’s current affiliation: Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York.

Johnson’s current affiliation: Applied Physics Laboratory, University of Washington, Seattle, Washington.

Sane’s current affiliation: Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey.

This article is included in the Air-Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics Special Collection.

Corresponding author: Baylor Fox-Kemper, baylor@brown.edu
Save