• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and Coauthors, 2019: On the use of indices to study extreme precipitation on sub‐daily and daily timescales. Environ. Res. Lett., 14, 125008, https://doi.org/10.1088/1748-9326/ab51b6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ali, H., and V. Mishra, 2018: Contribution of dynamic and thermodynamic scaling on sub-daily precipitation extremes in India. Geophys. Res. Lett., 45, 23522361, https://doi.org/10.1002/2018GL077065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in the climate and the hydrological cycle. Nature, 419, 228232, https://doi.org/10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Chang, M., B. Liu, C. Martinez-Villalobos, G. Ren, S. Li, and T. Zhou, 2020: Changes in extreme precipitation accumulations during the warm season over continental China. J. Climate, 33, 10 79910 811, https://doi.org/10.1175/JCLI-D-20-0616.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., T. Zhou, L. Zhang, X. Chen, W. Zhang, and J. Jiang, 2020: Global land monsoon precipitation changes in CMIP6 projections. Geophys. Res. Lett., 47, e2019GL086902, https://doi.org/10.1029/2019GL086902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chevuturi, A., N. P. Klingaman, A. G. Turner, and S. Hannah, 2018: Projected changes in the Asian-Australian monsoon region in 1.5°C and 2.0°C global-warming scenarios. Earth’s Future, 6, 339358, https://doi.org/10.1002/2017EF000734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, H., K. P. Bowman, and G. R. North, 2004: A comparison of gamma and lognormal distributions for characterizing satellite rain rates from the tropical rainfall measuring mission. J. Appl. Meteor., 43, 15861597, https://doi.org/10.1175/JAM2165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Contractor, S., M. G. Donat, and L. V. Alexander, 2018: Intensification of the daily wet day rainfall distribution across Australia. Geophys. Res. Lett., 45, 85688576, https://doi.org/10.1029/2018GL078875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deluca, A., and Á. Corral, 2010: Power laws and scaling of rain events and dry spells in the Catalonia region. 22 pp., http://hdl.handle.net/2072/152168.

    • Search Google Scholar
    • Export Citation
  • Deluca, A., and Á. Corral, 2014: Scale invariant events and dry spells for medium-resolution local rain data. Nonlinear Processes Geophys., 21, 555567, https://doi.org/10.5194/npg-21-555-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, K., S. Yang, M. Ting, Y. Tan, and S. He, 2018: Global monsoon precipitation: Trends, leading modes, and associated drought and heat wave in the Northern Hemisphere. J. Climate, 31, 69476966, https://doi.org/10.1175/JCLI-D-17-0569.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freychet, N., H.-H. Hsu, C. Chou, and C.-H. Wu, 2015: Asian summer monsoon in CMIP5 projections: A link between the change in extreme precipitation and monsoon dynamics. J. Climate, 28, 14771493, https://doi.org/10.1175/JCLI-D-14-00449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., F. Raffaele, and E. Coppola, 2019: The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn., 10, 7389, https://doi.org/10.5194/esd-10-73-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, K.‐J., S. Moon, A. Timmermann, and D. Kim, 2020: Future changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulations. Geophys. Res. Lett., 47, e2020GL087492, https://doi.org/10.1029/2020GL087492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Summary for policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability, C. B. Field et al., Eds., Cambridge University Press, 132.

    • Search Google Scholar
    • Export Citation
  • Kirsch, T. D., C. Wadhwani, L. Sauer, S. Doocy, and C. Catlett, 2012: Impact of the 2010 Pakistan floods on rural and urban populations at six months. PLOS Curr., 1, 2432, https://doi.org/10.1371/4fdfb212d2432.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., H. Endo, K. Krishna Kumar, I. F. A. Cavalcanti, P. Goswami, and T. Zhou, 2013: Monsoons in a changing world: A regional perspective in a global context. J. Geophys. Res. Atmos., 118, 30533065, https://doi.org/10.1002/jgrd.50258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D., S.-K. Min, E. Fischer, H. Shiogama, I. Bethke, L. Lierhammer, and J. F. Scinocca, 2018: Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics. Environ. Res. Lett., 13, 044033, https://doi.org/10.1088/1748-9326/aab55d.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lui, Y. S., C.-Y. Tam, and N.-C. Lau, 2019: Future changes in Asian summer monsoon precipitation extremes as inferred from 20-km AGCM simulations. Climate Dyn., 52, 14431459, https://doi.org/10.1007/s00382-018-4206-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez-Villalobos, C., and J. D. Neelin, 2018: Shifts in precipitation accumulation extremes during the warm season over the United States. Geophys. Res. Lett., 45, 85868595, https://doi.org/10.1029/2018GL078465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez-Villalobos, C., and J. D. Neelin, 2019: Why do precipitation intensities tend to follow gamma distributions? J. Atmos. Sci., 76, 36113631, https://doi.org/10.1175/JAS-D-18-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez-Villalobos, C., and J. D. Neelin, 2021: Climate models capture key features of extreme precipitation probabilities across regions. Environ. Res. Lett., 16, 024017, https://doi.org/10.1088/1748-9326/abd351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, V., and H. L. Shah, 2018: Hydroclimatological perspective of the Kerala flood of 2018. J. Geol. Soc. India, 92, 645650, https://doi.org/10.1007/s12594-018-1079-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, S., and K.-J. Ha, 2020: Future changes in monsoon duration and precipitation using CMIP6. npj Climate Atmos. Sci., 3, 45, https://doi.org/10.1038/s41612-020-00151-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., S. Sahany, S. N. Stechmann, and D. Bernstein, 2017: Global warming precipitation accumulation increases above the current-climate cutoff scale. Proc. Natl. Acad. Sci. USA, 114, 12581263, https://doi.org/10.1073/pnas.1615333114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ni, Y., and P.-C. Hsu, 2018: Inter-annual variability of global monsoon precipitation in present-day and future warming scenarios based on 33 Coupled Model Intercomparison Project Phase 5 models. Int. J. Climatol., 38, 48754890, https://doi.org/10.1002/joc.5704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009a: Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J. Climate, 22, 56765685, https://doi.org/10.1175/2009JCLI2701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009b: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, https://doi.org/10.1073/pnas.0907610106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., and Coauthors, 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 34613482, https://doi.org/10.5194/gmd-9-3461-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363, https://doi.org/10.1007/s00382-006-0180-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., 2018: What precipitation is extreme? Science, 360, 10721073, https://doi.org/10.1126/science.aat1871.

  • Pendergrass, A. G., F. Lehner, B. M. Sanderson, and Y. Xu, 2015: Does extreme precipitation intensity depend on the emissions scenario? Geophys. Res. Lett., 42, 87678774, https://doi.org/10.1002/2015GL065854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., C. Hertlein, and K. Christensen, 2001: A complexity view of rainfall. Phys. Rev. Lett., 88, 018701, https://doi.org/10.1103/PhysRevLett.88.018701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, O., A. Deluca, A. Corral, J. D. Neelin, and C. E. Holloway, 2010: Universality of rain event size distributions. J. Stat. Mech., 2010, P11030, https://doi.org/10.1088/1742-5468/2010/11/P11030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., P. A. O’Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Climate Change, 7, 423427, https://doi.org/10.1038/nclimate3287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., A. Giannini, M. Rojas, S. A. Rauscher, S. Bordoni, D. Singh, and S. J. Camargo, 2019: Monsoon responses to climate changes—Connecting past, present and future. Curr. Climate Change Rep., 5, 6379, https://doi.org/10.1007/s40641-019-00125-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and J. D. Neelin, 2011: A stochastic model for the transition to strong convection. J. Atmos. Sci., 68, 29552970, https://doi.org/10.1175/JAS-D-11-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and J. D. Neelin, 2014: First-passage-time prototypes for precipitation statistics. J. Atmos. Sci., 71, 32693291, https://doi.org/10.1175/JAS-D-13-0268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., H. Shiogama, and S. Emori, 2010: Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc. Natl. Acad. Sci. USA, 107, 571575, https://doi.org/10.1073/pnas.0903186107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: Toward a unified view of the American monsoon systems. J. Climate, 19, 49775000, https://doi.org/10.1175/JCLI3896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Ding, 2008: Global monsoon: Dominant mode of annual variations in the tropics. Dyn. Atmos. Oceans, 44, 165183, https://doi.org/10.1016/j.dynatmoce.2007.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., H.-J. Kim, K. Kikuchi, and A. Kitoh, 2011: Diagnostic metrics for evaluation of annual and diurnal cycles. Climate Dyn., 37, 941955, https://doi.org/10.1007/s00382-010-0877-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., C. Jin, and J. Liu, 2020: Understanding future change of global monsoons projected by CMIP6 models. J. Climate, 33, 64716489, https://doi.org/10.1175/JCLI-D-19-0993.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., D. Jiang, and X. Lang, 2017: Future extreme climate changes linked to global warming intensity. Sci. Bull., 62, 16731680, https://doi.org/10.1016/j.scib.2017.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., B. Zhou, and Y. Xu, 2015: Response of precipitation and its extremes over China to warming: CMIP5 simulation and projection. Chin. J. Geophys., 58, 461473, https://doi.org/10.1002/cjg2.20187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Lin, P. Zhao, X. Yu, S. Wang, H. Kang, and Y. Ding, 2013: The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons. Geophys. Res. Lett., 40, 14261431, https://doi.org/10.1002/grl.50304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and T. Zhou, 2019: Significant increases in extreme precipitation and the associations with global warming over the global land monsoon regions. J. Climate, 32, 84658488, https://doi.org/10.1175/JCLI-D-18-0662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., T. Zhou, L. Zou, L. Zhang, and X. Chen, 2018: Reduced exposure to extreme precipitation from 0.5°C less warming in global land monsoon regions. Nat. Commun., 9, 3153, https://doi.org/10.1038/s41467-018-05633-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., J. Lu, W. Zhang, and Z. Chen, 2020: The sources of uncertainty in the projection of global land monsoon precipitation. Geophys. Res. Lett., 47, e2020GL088415, https://doi.org/10.1029/2020GL088415.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 904 896 73
Full Text Views 362 359 17
PDF Downloads 464 459 25

Understanding Future Increases in Precipitation Extremes in Global Land Monsoon Regions

Meiyu ChangaDepartment of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China

Search for other papers by Meiyu Chang in
Current site
Google Scholar
PubMed
Close
,
Bo LiuaDepartment of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China

Search for other papers by Bo Liu in
Current site
Google Scholar
PubMed
Close
,
Bin WangbDepartment of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii
cEarth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Bin Wang in
Current site
Google Scholar
PubMed
Close
,
Cristian Martinez-VillalobosdFaculty of Engineering and Science, Universidad Adolfo Ibañez, Santiago, Chile

Search for other papers by Cristian Martinez-Villalobos in
Current site
Google Scholar
PubMed
Close
,
Guoyu RenaDepartment of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
eLaboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, China

Search for other papers by Guoyu Ren in
Current site
Google Scholar
PubMed
Close
, and
Tianjun ZhoufLASG, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China

Search for other papers by Tianjun Zhou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates future changes in daily precipitation extremes and the involved physics over the global land monsoon (GM) region using climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6). The daily precipitation extreme is identified by the cutoff scale, measuring the extreme tail of the precipitation distribution. Compared to the historical period, multimodel results reveal a continuous increase in precipitation extremes under four scenarios, with a progressively higher fraction of precipitation exceeding the historical cutoff scale when moving into the future. The rise of the cutoff scale by the end of the century is reduced by 57.8% in the moderate emission scenario relative to the highest scenario, underscoring the social benefit in reducing emissions. The cutoff scale sensitivity, defined by the increasing rates of the cutoff scale over the GM region to the global mean surface temperature increase, is nearly independent of the projected periods and emission scenarios, roughly 8.0% K−1 by averaging all periods and scenarios. To understand the cause of the changes, we applied a physical scaling diagnostic to decompose them into thermodynamic and dynamic contributions. We find that thermodynamics and dynamics have comparable contributions to the intensified precipitation extremes in the GM region. Changes in thermodynamic scaling contribute to a spatially uniform increase pattern, while changes in dynamic scaling dominate the regional differences in the increased precipitation extremes. Furthermore, the large intermodel spread of the projection is primarily attributed to variations of dynamic scaling among models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bo Liu, boliu@cug.edu.cn

Abstract

This study investigates future changes in daily precipitation extremes and the involved physics over the global land monsoon (GM) region using climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP6). The daily precipitation extreme is identified by the cutoff scale, measuring the extreme tail of the precipitation distribution. Compared to the historical period, multimodel results reveal a continuous increase in precipitation extremes under four scenarios, with a progressively higher fraction of precipitation exceeding the historical cutoff scale when moving into the future. The rise of the cutoff scale by the end of the century is reduced by 57.8% in the moderate emission scenario relative to the highest scenario, underscoring the social benefit in reducing emissions. The cutoff scale sensitivity, defined by the increasing rates of the cutoff scale over the GM region to the global mean surface temperature increase, is nearly independent of the projected periods and emission scenarios, roughly 8.0% K−1 by averaging all periods and scenarios. To understand the cause of the changes, we applied a physical scaling diagnostic to decompose them into thermodynamic and dynamic contributions. We find that thermodynamics and dynamics have comparable contributions to the intensified precipitation extremes in the GM region. Changes in thermodynamic scaling contribute to a spatially uniform increase pattern, while changes in dynamic scaling dominate the regional differences in the increased precipitation extremes. Furthermore, the large intermodel spread of the projection is primarily attributed to variations of dynamic scaling among models.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bo Liu, boliu@cug.edu.cn

Supplementary Materials

    • Supplemental Materials (pdf 2.31 MB)
Save