Low-Frequency Atmospheric Variability Patterns and Synoptic Types Linked to Large Floods in the Lower Ebro River Basin

J. C. Peña aMeteorological Service of Catalonia, Barcelona, Spain
bFluvalps–PaleoRisk Research Group, Department of Geography, University of Barcelona, Barcelona, Spain

Search for other papers by J. C. Peña in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8784-6142
,
J. C. Balasch cDepartment of Environment and Soil Sciences, University of Lleida, Lleida, Spain

Search for other papers by J. C. Balasch in
Current site
Google Scholar
PubMed
Close
,
D. Pino dDepartment of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain
eInstitute of Space Studies of Catalonia (IEEC-UPC), Barcelona, Spain

Search for other papers by D. Pino in
Current site
Google Scholar
PubMed
Close
,
L. Schulte bFluvalps–PaleoRisk Research Group, Department of Geography, University of Barcelona, Barcelona, Spain

Search for other papers by L. Schulte in
Current site
Google Scholar
PubMed
Close
,
M. Barriendos fDepartment of History and Archaeology, University of Barcelona, Barcelona, Spain

Search for other papers by M. Barriendos in
Current site
Google Scholar
PubMed
Close
,
J. L. Ruiz-Bellet cDepartment of Environment and Soil Sciences, University of Lleida, Lleida, Spain

Search for other papers by J. L. Ruiz-Bellet in
Current site
Google Scholar
PubMed
Close
,
M. Prohom cDepartment of Environment and Soil Sciences, University of Lleida, Lleida, Spain

Search for other papers by M. Prohom in
Current site
Google Scholar
PubMed
Close
,
J. Tuset gRIUS Group–Fluvial Dynamics Research Group, University of Lleida, Lleida, Spain

Search for other papers by J. Tuset in
Current site
Google Scholar
PubMed
Close
,
J. Mazon dDepartment of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain

Search for other papers by J. Mazon in
Current site
Google Scholar
PubMed
Close
, and
X. Castelltort cDepartment of Environment and Soil Sciences, University of Lleida, Lleida, Spain

Search for other papers by X. Castelltort in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study analyzes the atmospheric variability that caused the largest floods affecting the town of Tortosa, Spain, in the mouth of the Ebro River (northeast Iberian Peninsula). The Tortosa flood database and flood marks in the nearby town of Xerta are used to define the more relevant flooding episodes (discharges >2900 m3 s−1) of the 1600–2005 period. We explore the atmospheric variability based on low-frequency patterns and synoptic types applying a multivariable analysis to grids at sea level pressure and geopotential at 500 hPa provided by the twentieth-century V3 Reanalysis Project for the instrumental period (since 1836). Output from the Last Millennium Ensemble Project was used to analyze the sea level pressure over the pre-instrumental period (before 1836). Our analysis includes 33 flood episodes. Four synoptic types are related to floods in Tortosa since 1836, characterized by low pressure systems that interact with the Mediterranean warm air mass and promote atmospheric destabilization. Flooding in Tortosa is related to relative high values of solar activity, positive Northern Hemisphere temperature anomalies, and NAO in positive phase. This result indicates that the major floods are related to zonal atmospheric circulations (west-to-east cyclone transfer). During winter, the main impact of the floods is located at the western part of the basin, and the Pyrenean subbasins are affected during autumn. The major finding is that similar flood behavior is detected since 1600, improving our understanding of past climates, enhancing the knowledge base for some aspects and impacts of climate change, and reducing uncertainty about future outcomes.

Significance Statement

A total of 33 large floods (>2900 m3 s−1) were registered since 1600 in Tortosa, Spain, located at the mouth of the Ebro River (northeast Iberian Peninsula). They occur associated with low pressure systems that interact with the Mediterranean warm air mass promoting atmospheric destabilization. The floods in Tortosa are also associated with other important processes occurring at significantly longer time scales: high values of solar activity, positive Northern Hemisphere temperature anomalies, and NAO in positive phase, indicating that the major floods are related to zonal atmospheric circulations. The major finding is that we detect similar flood behaviors since 1600, improving our understanding of past climates, enhancing the knowledge base for some aspects and impacts of climate change, and reducing uncertainty about future outcomes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Juan Carlos Peña, juancarlos.pena@gencat.cat

Abstract

This study analyzes the atmospheric variability that caused the largest floods affecting the town of Tortosa, Spain, in the mouth of the Ebro River (northeast Iberian Peninsula). The Tortosa flood database and flood marks in the nearby town of Xerta are used to define the more relevant flooding episodes (discharges >2900 m3 s−1) of the 1600–2005 period. We explore the atmospheric variability based on low-frequency patterns and synoptic types applying a multivariable analysis to grids at sea level pressure and geopotential at 500 hPa provided by the twentieth-century V3 Reanalysis Project for the instrumental period (since 1836). Output from the Last Millennium Ensemble Project was used to analyze the sea level pressure over the pre-instrumental period (before 1836). Our analysis includes 33 flood episodes. Four synoptic types are related to floods in Tortosa since 1836, characterized by low pressure systems that interact with the Mediterranean warm air mass and promote atmospheric destabilization. Flooding in Tortosa is related to relative high values of solar activity, positive Northern Hemisphere temperature anomalies, and NAO in positive phase. This result indicates that the major floods are related to zonal atmospheric circulations (west-to-east cyclone transfer). During winter, the main impact of the floods is located at the western part of the basin, and the Pyrenean subbasins are affected during autumn. The major finding is that similar flood behavior is detected since 1600, improving our understanding of past climates, enhancing the knowledge base for some aspects and impacts of climate change, and reducing uncertainty about future outcomes.

Significance Statement

A total of 33 large floods (>2900 m3 s−1) were registered since 1600 in Tortosa, Spain, located at the mouth of the Ebro River (northeast Iberian Peninsula). They occur associated with low pressure systems that interact with the Mediterranean warm air mass promoting atmospheric destabilization. The floods in Tortosa are also associated with other important processes occurring at significantly longer time scales: high values of solar activity, positive Northern Hemisphere temperature anomalies, and NAO in positive phase, indicating that the major floods are related to zonal atmospheric circulations. The major finding is that we detect similar flood behaviors since 1600, improving our understanding of past climates, enhancing the knowledge base for some aspects and impacts of climate change, and reducing uncertainty about future outcomes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Juan Carlos Peña, juancarlos.pena@gencat.cat

Supplementary Materials

    • Supplemental Materials (PDF 297 KB)
Save
  • Amann, B., S. Szidat, M. Grosjean, 2015: A millennial-long record of warm season precipitation and flood frequency for the north-western Alps inferred from varved lake sediments: Implications for the future. Quat. Sci. Rev., 115, 89100, https://doi.org/10.1016/j.quascirev.2015.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balasch, J. C., J. L. Ruiz-Bellet, and J. Tuset, 2011: Historical flash floods retromodelling in the Ondara River in Tàrrega (NE Iberian Peninsula). Nat. Hazards Earth Syst. Sci., 11, 33593371, https://doi.org/10.5194/nhess-11-3359-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balasch, J. C., D. Pino, J. L. Ruiz-Bellet, J. Tuset, M. Barriendos, X. Castelltort, and J. C. Peña, 2019: The extreme floods in the Ebro River basin since 1600 CE. Sci. Total Environ., 646, 645660, https://doi.org/10.1016/j.scitotenv.2018.07.325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriendos, M., 1997: Climate variations in the Iberian Peninsula during the late Maunder Minimum (AD 1675–1715): An analysis of data from rogation ceremonies. Holocene, 7, 105111, https://doi.org/10.1177/095968369700700110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriendos, M., and J. Martín-Vide, 1998: Secular climatic oscillations as indicated by catastrophic floods in the Spanish Mediterranean coastal area (14th–19th centuries). Climatic Change, 38, 473491, https://doi.org/10.1023/A:1005343828552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriendos, M., and M. C. Llasat, 2003: The case of the ‘Maldá’ anomaly in the western Mediterranean Basin (AD 1760–1800): An example of a strong climatic variability. Climatic Change, 61, 191216, https://doi.org/10.1023/A:1026327613698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriendos, M., J. L. Ruiz-Bellet, J. Tuset, J. Mazon, J. C. Balasch, D. Pino, and J. L. Ayala, 2014: The ‘Prediflood’ database of historical floods in Catalonia (NE Iberian Peninsula) AD 1035–2013, and its potential applications in flood analysis. Hydrol. Earth Syst. Sci., 18, 48074823, https://doi.org/10.5194/hess-18-4807-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriendos, M., and Coauthors, 2019: Climatic and social factors behind the Spanish Mediterranean flood event chronologies from documentary sources (14th–20th centuries). Global Planet. Change, 182, 102997, https://doi.org/10.1016/j.gloplacha.2019.102997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batalla, R. J., and D. Vericat, 2011: A review of sediment quantity issues: Examples from the River Ebro and adjacent basins (northeastern Spain). Integr. Environ. Assess. Manag., 7, 256268, https://doi.org/10.1002/ieam.126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bayliss, A. C., and D. W. Reed, 2001: The use of historical data in flood frequency estimation. Centre for Ecology and Hydrology, NERC, 87 pp., http://nora.nerc.ac.uk/8060/1/BaylissRepN008060CR.pdf.

  • Benito, G., M. J. Machado, and A. Pérez-González, 1996: Climate change and flood sensitivity in Spain. Global Continental Changes: The Context of Paleo-Hydrology. J. Branson, A. G. Brown, and K. J. Gregory, Eds., Geological Society of London, 95–98, https://doi.org/10.1144/GSL.SP.1996.115.01.08.

    • Crossref
    • Export Citation
  • Benito, G., A. Diez-Herrero, and M. de Villalta, 2003: Magnitude and frequency of flooding in the Tagus River (central Spain) over the last millennium. Climatic Change, 58, 171192, https://doi.org/10.1023/A:1023417102053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benito, G., O. Castillo, J. A. Ballesteros-Cánovas, M. J. Machado, and M. Barriendos, 2021: Enhanced flood hazard assessment beyond decadal climate cycles based on centennial historical data. Hydrol. Earth Syst. Sci., 25, 61076132, https://doi.org/10.5194/hess-25-6107-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bladé, E., L. Cea, G. Corestein, E. Escolano, J. Puertas, E. Vázquez-Cendón, J. Dolz, and A. Coll, 2014: Iber: Herramienta de simulación numérica del flujo en ríos. Rev. Int. Métodos Numér. Cálc. Diseño Ing., 30 (1), 110, https://doi.org/10.1016/j.rimni.2012.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blöschl, G., and Coauthors, 2017: Changing climate shifts timing of European floods. Science, 357, 588590, https://doi.org/10.1126/science.aan2506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boquera, M., 2008: Lo riu és vida: Percepcions antropològiques de l’Ebre català. Doctoral thesis, Universitat Rovira i Virgili, 391 pp., http://www.tdx.cat/TDX-1125108-092131.

  • Buendia, C., R. J. Batalla, S. Sabater, A. Palau, and R. Marcé, 2016: Runoff trends driven by climate and afforestation in a Pyrenean basin. Land Degrad. Dev., 27, 823838, https://doi.org/10.1002/ldr.2384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compagnucci, R. H., D. Araneo, and P. O. Canziani, 2001: Principal sequence pattern analysis: A new approach to classifying the evolution of atmospheric systems. Int. J. Climatol., 21, 197217, https://doi.org/10.1002/joc.601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137 (654), 128, https://doi.org/10.1002/qj.776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corella, J. P., G. Benito, X. Rodriguez-Lloveras, A. Brauer, and B. L. Valero-Garcés, 2014: Annually-resolved lake record of extreme hydro-meteorological events since AD 1347 in NE Iberian Peninsula. Quat. Sci. Rev., 93, 7790, https://doi.org/10.1016/j.quascirev.2014.03.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corella, J. P., B. L. Valero-Garcés, S. M. Vicente-Serrano, A. Brauer, and G. Benito, 2016: Three millennia of heavy rainfalls in western Mediterranean: Frequency, seasonality, and atmospheric drivers. Sci. Rep., 6, 38206, https://doi.org/10.1038/srep38206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curto, A., 2007: La riuada de 1907. La Riuada. Revista d’Informació Cultural (Móra d’Ebre), 29, 48.

  • Delaygue, G. and E. Bard, 2009: Solar forcing based on Be-10 in Antarctica ice over the past millennium and beyond. Geophysical Research Abstracts, Vol. 11, Abstract EGU2009-6943, https://meetingorganizer.copernicus.org/EGU2009/EGU2009-6943.pdf.

  • Delgado, J., P. Llorens, G. Nord, I. R. Calder, and F. Gallart, 2010: Modelling the hydrological response of a Mediterranean medium-sized headwater basin subject to land cover change: The Cardener River basin (NE Spain). J. Hydrol., 383, 125134, https://doi.org/10.1016/j.jhydrol.2009.07.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Valle, J., A. Ollero, and M. Sánchez, 2007. Atlas de los ríos de Aragón. Ediciones Prames, Zaragoza, 473 pp.

  • Ely, L. L., 1997: Response of extreme floods in the southwestern United States to climatic variations in the late Holocene. Geomorphology, 19, 175201, https://doi.org/10.1016/S0169-555X(97)00014-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ely, L. L., Y. Enzel, V. R. Baker, and D. R. Cayan, 1993: A 5000-year record of extreme floods and climate change in the southwestern United States. Science, 262, 410412, https://doi.org/10.1126/science.262.5132.410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. Knight, H. W. Linderholm, D. Fereday, S. Ineson, and J. W. Hurrell, 2009: The summer North Atlantic Oscillation: Past, present, and future. J. Climate, 22, 10821103, https://doi.org/10.1175/2008JCLI2459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frei, C., H. C. Davis, J. Gurtz, and C. Schär, 2001: Climate dynamics and extreme precipitation and flood events in Central Europe. Integrated Assess., 1, 281300, https://doi.org/10.1023/A:1018983226334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallart, F., and P. Llorens, 2004: Observations on land cover changes and water resources in the headwaters of the Ebro catchment, Iberian Peninsula. Phys. Chem. Earth, 29, 769773, https://doi.org/10.1016/j.pce.2004.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, C., A. Robock, and C. Ammann, 2008: Volcanic forcing of climate over the past 1500 years: An improved ice core–based index for climate models. J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008JD010239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilabert, J., and M. C. Llasat, 2018: Circulation weather types associated with extreme flood events in northwestern Mediterranean. Int. J. Climatol., 38, 18641876, https://doi.org/10.1002/joc.5301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glur, L., S. B. With, U. Büntgen, A. Gilli, G. H. Haug, C. Schär, J. Beer, and F. S. Anselmetti, 2013: Frequent floods in the Europeans Alps coincide with cooler periods of the past 2500 years. Sci. Rep., 3, 2770, https://doi.org/10.1038/srep02770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, L. J., and Coauthors, 2010: Solar influences on climate. Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282.

  • Haigh, J. D., 2003: The effects of solar variability on the Earth’s climate. Philos. Trans. Roy. Soc., 361A, 95111, https://doi.org/10.1098/rsta.2002.1111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2014: Synthesis Report. R. K. Pachauri and L. A. Meyer, Eds., IPCC, 151 pp.

  • Jacobeit, J., P. D. Jones, T. D. Davies, and C. Beck, 2001: Circulation changes in Europe since the 1780s. History and Climate: Memories of the Future? P. Jones et al., Eds., Springer, 79–99, https://doi.org/10.1007/978-1-4757-3365-5_5.

    • Crossref
    • Export Citation
  • Jacobeit, J., R. Glaser, J. Luterbacher, and H. Wanner, 2003: Links between flood events in central Europe since AD 1500 and large-scale atmospheric circulation modes. Geophys. Res. Lett., 30, 1172, https://doi.org/10.1029/2002GL016433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobeit, J., A. Philipp, and M. Nonnenmacher, 2006: Atmospheric circulation dynamics linked with prominent discharge events in central Europe. Hydrol. Sci. J., 51, 946965, https://doi.org/10.1623/hysj.51.5.946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J. O., and K. M. Krumhardt, 2011: The KK10 Anthropogenic Land Cover Change scenario for the preindustrial Holocene, link to data in NetCDF format. PANGAEA, https://doi.org/10.1594/PANGAEA.871369 [supplement to J. O Kaplan, K. M. Krumhardt, E. C. Ellis, W. F. Ruddiman, C. Lemmen, and K. Klein Goldewijk, 2011: Holocene carbon emissions as a result of anthropogenic land cover change. Holocene, 21, 775–791, https://doi.org/10.1177/0959683610386983.]

    • Crossref
    • Export Citation
  • Knox, J. C., 1993: Large increases in flood magnitude in response to modest changes in climate. Nature, 361, 430432, https://doi.org/10.1038/361430a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llasat, M. C., and M. Puigcerver, 1994: Meteorological factors associated with floods in the north-eastern part of the Iberian Peninsula. Nat. Hazards, 9, 8193, https://doi.org/10.1007/BF00662592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llasat, M. C., M. Barriendos, A. Barrera, and T. Rigo, 2005: Floods in Catalonia (NE Spain) since the 14th century. Climatological and meteorological aspects from historical documentary sources and old instrumental records. J. Hydrol., 313, 3247, https://doi.org/10.1016/j.jhydrol.2005.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luterbacher, J., R. Rickli, E. Xoplaki, C. Tinguely, C. Beck, C. Pfister, and H. Wanner, 2001: The Late Maunder Minimum (1675–1715)—A key period for studying decadal scale climatic change in Europe. Climatic Change, 49, 441462, https://doi.org/10.1023/A:1010667524422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luterbacher, J., and Coauthors, 2002: Reconstruction of sea level pressure fields over the eastern North Atlantic and Europe back to 1500. Climate Dyn., 18, 545561, https://doi.org/10.1007/s00382-001-0196-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MAGRAMA, 2015: Ministerio de Agricultura, Alimentación y Medio Ambiente: Anuario de aforos. MAGRAMA, accessed 18 November 2019, http://sig.magrama.es/aforos/visor.html.

  • Martín-Vide, J., and D. Fernández, 2001: El índice NAO y la precipitación mensual en la España peninsular. Investig. Geogr., 26, 4158, https://doi.org/10.14198/INGEO2001.26.07.

    • Search Google Scholar
    • Export Citation
  • Merino, A., S. Fernández-González, E. García-Ortega, J. L. Sánchez, L. López, and E. Gascón, 2017: Temporal continuity of extreme precipitation events using sub-daily precipitation: Application to floods in the Ebro basin, north-eastern Spain. Int. J. Climatol., 38, 18771892, https://doi.org/10.1002/joc.5302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miravall, R., 1997: La tragèdia de les riuades de l’Ebre. La Riuada. Revista d’Informació Cultural (Móra d’Ebre), 9, 46.

  • Monserrate, A., 2013: Reconstrucción de las avenidas de finales de siglo XIX en Zaragoza. M.S. thesis, University of Lleida, 79 pp.

  • Moreno, A., B. L. Valero-Garcés, P. González-Sampériz, and M. Rico, 2008: Flood response to rainfall variability during the last 2000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain). J. Paleolimnol., 40, 943961, https://doi.org/10.1007/s10933-008-9209-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muscheler, R., F. Joos, J. Beer, S. A. Müller, M. Vonmoos, and I. Snowball, 2007: Solar activity during the last 1000 yr. inferred from radionuclide records. Quat. Sci. Rev., 26, 8297, https://doi.org/10.1016/j.quascirev.2006.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ollero, A., 2010: Channel changes and floodplain management in the meandering middle Ebro River, Spain. Geomorphology, 117, 247260, https://doi.org/10.1016/j.geomorph.2009.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, J. A., and G. Garzón, 2004: Influencia de la oscilación del Atlántico norte en las inundaciones del Río Guadiana. Riesgos naturales y antrópicos en Geomorfología, G. Benito and A. Díez-Herrero, Eds., CSIC, 117–126.

  • Ortega, J. A., and G. Garzón, 2009: A contribution to improved flood magnitude estimation in base of paleoflood record and climatic implications—Guadiana River (Iberian Peninsula). Nat. Hazards Earth Syst. Sci., 9, 229239, https://doi.org/10.5194/nhess-9-229-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., and Coauthors, 2016: Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model. Bull. Amer. Meteor. Soc., 97, 735754, https://doi.org/10.1175/BAMS-D-14-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña, J. C., and L. Schulte, 2020: Simulated and reconstructed atmospheric variability and their relation with large pre-industrial summer floods in the Hasli-Aare catchment (Swiss Alps) since 1300 CE. Global Planet. Change, 190, 103191, https://doi.org/10.1016/j.gloplacha.2020.103191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña, J. C., L. Schulte, A. Badoux, M. Barriendos, and A. Barrera-Escoda, 2015: Influence of solar forcing, climate variability and atmospheric circulation patterns on summer floods in Switzerland. Hydrol. Earth Syst. Sci., 19, 38073827, https://doi.org/10.5194/hess-19-3807-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pino, D., J. L. Ruiz-Bellet, J. C. Balasch, L. Romero-León, J. Tuset, M. Barriendos, J. Mazon, and X. Castelltort, 2016: Meteorological and hydrological analysis of major floods in NE Iberian Peninsula. J. Hydrol., 541, 6389, https://doi.org/10.1016/j.jhydrol.2016.02.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polonsky, A. B., and A. A. Sizov, Eds., 1991. Low frequency variability of the hydrometeorological and hydrophysical fields in the tropical and subtropical Atlantic associated with the Pacific ENSO events (in Russian). VINITI Rep., 247 pp.

  • Pongratz, J., C. H. Reick, T. Raddatz, and M. Claussen, 2008: A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochem. Cycles, 22, GB3018, https://doi.org/10.1029/2007GB003153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Querol, E., 2006: Les riuades de l’Ebre a la literatura. Recerca, 10, 261300.

  • Rogers, J. C., 1984: The association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon. Wea. Rev., 112, 19992015, https://doi.org/10.1175/1520-0493(1984)112<1999:TABTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Bellet, J. L., J. C. Balasch, J. Tuset, A. Monserrate, and A. Sánchez, 2015: Improvement of flood frequency analysis with historical information in different types of catchments and data series within the Ebro River basin (NE Iberian Peninsula). Z. Geomorphol., 59, 127157, https://doi.org/10.1127/zfg_suppl/2015/S-59219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruiz-Bellet, J. L., X. Castelltort, J. C. Balasch, and J. Tuset, 2016: Error of the modelled peak flow of the hydraulically reconstructed 1907 flood of the Ebro River in Xerta (NE Iberian Peninsula). European Geophysical Union General Assembly, 1 p., https://presentations.copernicus.org/EGU2016/EGU2016-5824_presentation.pdf.

    • Crossref
    • Export Citation
  • Ruiz-Bellet, J. L., X. Castelltort, J. C. Balasch, and J. Tuset, 2017: Uncertainty of the peak flow reconstruction of the 1907 flood in the Ebro River in Xerta (NE Iberian Peninsula). J. Hydrol., 545, 339354, https://doi.org/10.1016/j.jhydrol.2016.12.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sánchez-García, C., L. Schulte, F. Carvalho, and J. C. Peña, 2019: A 500-year flood history of the arid environments of southeastern Spain. The case of the Almanzora River. Global Planet. Change, 181, 102987, https://doi.org/10.1016/j.gloplacha.2019.102987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2011: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci. Model Dev., 4, 3345, https://doi.org/10.5194/gmd-4-33-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulte, L., H. Veit, F. Burjachs, and R. Julià, 2009: Lütschine fan delta response to climate variability and land use in the Bernese Alps during the last 2400 years. Geomorphology, 108, 107121, https://doi.org/10.1016/j.geomorph.2007.11.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulte, L., J. C. Peña, F. Carvalho, T. Schmidt, R. Julià, J. Llorca, and H. Veit, 2015: A 2600-year history of floods in the Bernese Alps, Switzerland: Frequencies, mechanisms, and climate forcing. Hydrol. Earth Syst. Sci., 19, 30473072, https://doi.org/10.5194/hess-19-3047-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulte, L., D. Schillereff, and J. I. Santisteban, 2019a: Pluridisciplinary analysis and multi-archive reconstruction of paleofloods: Societal demand, challenges and progress. Global Planet. Change, 177, 225238, https://doi.org/10.1016/j.gloplacha.2019.03.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulte, L., O. Wetter, B. Wilhelm, J. C. Peña, B. Amann, S. B. Wirth, F. Carvalho, and A. Gómez-Bolea, 2019b: Integration of multi-archive datasets for the development of a four-dimensional paleoflood model of alpine catchments. Global Planet. Change, 180, 6688, https://doi.org/10.1016/j.gloplacha.2019.05.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulte, L., D. Schillereff, J. I. Santisteban, and F. Marret-Davies, 2020: Pluridisciplinary analysis and multi-archive reconstruction of paleofloods. Global Planet. Change, 191, 103220, https://doi.org/10.1016/j.gloplacha.2020.103220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinhilber, F., J. Beer, and C. Frohlich, 2009: Total solar irradiance during the Holocene. Geophys. Res. Lett., 36, L19704, https://doi.org/10.1029/2009GL040142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturm, K., R. Glaser, J. Jacobeit, M. Deutsch, R. Brázdil, C. Pfister, J. Luterbacher, and H. Wanner, 2001: Hochwässer in Mitteleuropa seit 1500 und ihre Beziehung zur atmosphärischen Zirkulation. Petermanns Geogr. Mitt., 6, 1423.

    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., J. Mignot, P. Ortega, M. Khodri, M. Menegoz, C. H. Cassou, and V. Hanquiez, 2017: Impact of explosive volcanic eruptions on the main climate variability modes. Global Planet. Change, 150, 2445, https://doi.org/10.1016/j.gloplacha.2017.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teale, N. G., S. M. Quiring, and T. W. Ford, 2017: Association of synoptic-scale atmospheric patterns with flash flooding in watersheds of the New York City water supply system. Int. J. Climatol., 37, 358370, https://doi.org/10.1002/joc.4709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tejedor, E., M. de Luis, M. Barriendos, J. M. Cuadrat, J. Luterbacher, and M. A. Saz, 2019: Rogation ceremonies: A key to understanding past drought variability in northeastern Spain since 1650. Climate Past, 15, 16471664, https://doi.org/10.5194/cp-15-1647-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USACE, 2010: HEC-RAS: River Analysis System Hydraulic Reference Manual. Hydrologic Engineering Center, http://www.hec.usace.army.mil/software/hec-ras/documentation.

  • Vaquero, J. M., 2004: Solar signal in the number of floods recorded for the Tagus River basin over the last millennium. Climatic Change, 66, 2326, https://doi.org/10.1023/B:CLIM.0000043146.37662.de.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., J. I. López-Moreno, and S. Beguería, 2007: La precipitación en el Pirineo español: Diversidad espacial en las tendencias y escenarios futuros. Pirineos, 162, 4369, https://doi.org/10.3989/pirineos.2007.v162.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vieira, L. E. A., and S. K. Solanki, 2010: Evolution of the solar magnetic flux on time scales of years to millennia, Astron. Astrophys., 509, A100, https://doi.org/10.1051/0004-6361/200913276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vieira, L. E. A., S. K. Solanki, N. A. Krivova, and I. Usoskin, 2011: Evolution of the solar irradiance during the Holocene. Astron. Astrophys., 531, A6, https://doi.org/10.1051/0004-6361/201015843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y.-M., J. L. Lean, and N. R. Sheeley Jr., 2005: Modeling the sun’s magnetic field and irradiance since 1713. Astrophys. J., 625, 522538, https://doi.org/10.1086/429689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanner, H., and Coauthors, 2004: Dynamic and socioeconomic aspects of historical floods in Central Europe. Earth Sci., 58 (1), 116, https://doi.org/10.3112/erdkunde.2004.01.01.

    • Search Google Scholar
    • Export Citation
  • Wanner, H., and Coauthors, 2008: Mid- to Late Holocene climate change: An overview. Quat. Sci. Rev., 27, 17911828, https://doi.org/10.1016/j.quascirev.2008.06.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanner, H., O. Solomina, M. Grosjean, S. P. Ritz, and M. Jetel, 2011: Structure and origin of Holocene cold events. Quat. Sci. Rev., 30, 31093123, https://doi.org/10.1016/j.quascirev.2011.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetter, O., C. Pfister, R. Weingartner, J. Luterbacher, T. Reist, and J. Trösch, 2011: The largest floods in the High Rhine basin since 1268 assessed from documentary and instrumental evidence. Hydrol. Sci. J., 56, 733758, https://doi.org/10.1080/02626667.2011.583613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelm, B., and Coauthors, 2012: 1400 years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms. Quat. Res., 78 (1), 112, https://doi.org/10.1016/j.yqres.2012.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wirth, S., and Coauthors, 2013: A 2000 year long seasonal record of floods in the southern European Alps. Geophys. Res. Lett., 40, 40254029, https://doi.org/10.1002/grl.50741.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 909 0 0
Full Text Views 449 234 9
PDF Downloads 312 124 8