Separating the Influences of Low-Latitude Warming and Sea Ice Loss on Northern Hemisphere Climate Change

Stephanie Hay aUniversity of Exeter, Exeter, United Kingdom

Search for other papers by Stephanie Hay in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4007-842X
,
Paul J. Kushner bUniversity of Toronto, Toronto, Ontario, Canada

Search for other papers by Paul J. Kushner in
Current site
Google Scholar
PubMed
Close
,
Russell Blackport cEnvironment and Climate Change Canada, Victoria, British Columbia, Canada

Search for other papers by Russell Blackport in
Current site
Google Scholar
PubMed
Close
,
Kelly E. McCusker dRhodium Group, New York, New York

Search for other papers by Kelly E. McCusker in
Current site
Google Scholar
PubMed
Close
,
Thomas Oudar eCNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

Search for other papers by Thomas Oudar in
Current site
Google Scholar
PubMed
Close
,
Lantao Sun fColorado State University, Fort Collins, Colorado

Search for other papers by Lantao Sun in
Current site
Google Scholar
PubMed
Close
,
Mark England gUniversity of Santa Cruz, Santa Cruz, California

Search for other papers by Mark England in
Current site
Google Scholar
PubMed
Close
,
Clara Deser hNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Clara Deser in
Current site
Google Scholar
PubMed
Close
,
James A. Screen aUniversity of Exeter, Exeter, United Kingdom

Search for other papers by James A. Screen in
Current site
Google Scholar
PubMed
Close
, and
Lorenzo M. Polvani iColumbia University, New York, New York

Search for other papers by Lorenzo M. Polvani in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Analyzing a multimodel ensemble of coupled climate model simulations forced with Arctic sea ice loss using a two-parameter pattern-scaling technique to remove the cross-coupling between low- and high-latitude responses, the sensitivity to high-latitude sea ice loss is isolated and contrasted to the sensitivity to low-latitude warming. Despite some differences in experimental design, the Northern Hemisphere near-surface atmospheric sensitivity to sea ice loss is found to be robust across models in the cold season; however, a larger intermodel spread is found at the surface in boreal summer, and in the free tropospheric circulation. In contrast, the sensitivity to low-latitude warming is most robust in the free troposphere and in the warm season, with more intermodel spread in the surface ocean and surface heat flux over the Northern Hemisphere. The robust signals associated with sea ice loss include upward turbulent and longwave heat fluxes where sea ice is lost, warming and freshening of the Arctic Ocean, warming of the eastern North Pacific Ocean relative to the western North Pacific with upward turbulent heat fluxes in the Kuroshio Extension, and salinification of the shallow shelf seas of the Arctic Ocean alongside freshening in the subpolar North Atlantic Ocean. In contrast, the robust signals associated with low-latitude warming include intensified ocean warming and upward latent heat fluxes near the western boundary currents, freshening of the Pacific Ocean, salinification of the North Atlantic, and downward sensible and longwave fluxes over the ocean.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephanie Hay, shay@physics.utoronto.ca

Abstract

Analyzing a multimodel ensemble of coupled climate model simulations forced with Arctic sea ice loss using a two-parameter pattern-scaling technique to remove the cross-coupling between low- and high-latitude responses, the sensitivity to high-latitude sea ice loss is isolated and contrasted to the sensitivity to low-latitude warming. Despite some differences in experimental design, the Northern Hemisphere near-surface atmospheric sensitivity to sea ice loss is found to be robust across models in the cold season; however, a larger intermodel spread is found at the surface in boreal summer, and in the free tropospheric circulation. In contrast, the sensitivity to low-latitude warming is most robust in the free troposphere and in the warm season, with more intermodel spread in the surface ocean and surface heat flux over the Northern Hemisphere. The robust signals associated with sea ice loss include upward turbulent and longwave heat fluxes where sea ice is lost, warming and freshening of the Arctic Ocean, warming of the eastern North Pacific Ocean relative to the western North Pacific with upward turbulent heat fluxes in the Kuroshio Extension, and salinification of the shallow shelf seas of the Arctic Ocean alongside freshening in the subpolar North Atlantic Ocean. In contrast, the robust signals associated with low-latitude warming include intensified ocean warming and upward latent heat fluxes near the western boundary currents, freshening of the Pacific Ocean, salinification of the North Atlantic, and downward sensible and longwave fluxes over the ocean.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephanie Hay, shay@physics.utoronto.ca
Save
  • Aagaard, K., and E. C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94, 14485, https://doi.org/10.1029/JC094iC10p14485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. M. Polvani, 2015: CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J. Climate, 28, 52545271, https://doi.org/10.1175/JCLI-D-14-00589.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev.: Climate Change, 6, 277286, https://doi.org/10.1002/wcc.337.

    • Search Google Scholar
    • Export Citation
  • Bichet, A., P. J. Kushner, L. Mudryk, L. Terray, and J. C. Fyfe, 2015: Estimating the anthropogenic sea surface temperature response using pattern scaling. J. Climate, 28, 37513763, https://doi.org/10.1175/JCLI-D-14-00604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., and F. M. Selten, 2014: Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature, 509, 479482, https://doi.org/10.1038/nature13259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and P. J. Kushner, 2016: The transient and equilibrium climate response to rapid summertime sea ice loss in CCSM4. J. Climate, 29, 401417, https://doi.org/10.1175/JCLI-D-15-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and P. J. Kushner, 2017: Isolating the atmospheric circulation response to Arctic sea ice loss in the coupled climate system. J. Climate, 30, 21632185, https://doi.org/10.1175/JCLI-D-16-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and J. A. Screen, 2020: Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Sci. Adv., 6, eaay2880, https://doi.org/10.1126/sciadv.aay2880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., J. A. Screen, K. van der Wiel, and R. Bintanja, 2019: Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat. Climate Change, 9, 697704, https://doi.org/10.1038/s41558-019-0551-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Res., 2029, https://doi.org/10.1038/s41558-019-0662-y.

    • Search Google Scholar
    • Export Citation
  • Collow, T. W., W. Wang, and A. Kumar, 2019: Reduction in northern midlatitude 2-m temperature variability due to Arctic sea ice loss. J. Climate, 32, 50215035, https://doi.org/10.1175/JCLI-D-18-0692.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, J., A. Dai, and H. Xu, 2020: Nonlinear climate responses to increasing CO2 and anthropogenic aerosols simulated by CESM1. J. Climate, 33, 281301, https://doi.org/10.1175/JCLI-D-19-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, https://doi.org/10.1175/2009JCLI3053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and L. Sun, 2015: The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J. Climate, 28, 21682186, https://doi.org/10.1175/JCLI-D-14-00325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., L. Sun, R. A. Tomas, and J. Screen, 2016: Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss? Geophys. Res. Lett., 43, 21492157, https://doi.org/10.1002/2016GL067792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., G. J. van Oldenborgh, and A. Cimatoribus, 2012: Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Climate, 25, 83738379, https://doi.org/10.1175/JCLI-D-12-00490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, https://doi.org/10.1175/2010JCLI3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M., L. M. Polvani, and L. Sun, 2018: Contrasting the Antarctic and Arctic atmospheric responses to projected sea ice loss in the late twenty-first century. J. Climate, 31, 63536370, https://doi.org/10.1175/JCLI-D-17-0666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M., L. M. Polvani, and L. Sun, 2020a: Robust Arctic warming caused by projected Antarctic sea ice loss. Environ. Res. Lett, 15, 104005, https://doi.org/10.1088/1748-9326/abaada.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M., L. M. Polvani, L. Sun, and C. Deser, 2020b: Tropical climate responses to projected Arctic and Antarctic sea-ice loss. Nat. Geosci., 13, 275281, https://doi.org/10.1038/s41561-020-0546-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., S. Po-Chedley, H. K. A. Singh, S. Hay, and P. J. Kushner, 2020: Sea ice and atmospheric circulation shape the high-latitude lapse rate feedback. npj Climate Atmos. Sci., 3, 41, https://doi.org/10.1038/s41612-020-00146-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., L. C. Shaffrey, and T. J. Woollings, 2014: Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Climate Dyn., 43, 11711182, https://doi.org/10.1007/s00382-013-1883-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, S., P. J. Kushner, R. Blackport, and K. E. McCusker, 2018: On the relative robustness of the climate response to high-latitude and low-latitude warming. Geophys. Res. Lett., 45, 62326241, https://doi.org/10.1029/2018GL077294.

    • Search Google Scholar
    • Export Citation
  • He, S., X. Xu, T. Furevik, and Y. Gao, 2020: Eurasian cooling linked to the vertical distribution of Arctic warming. Geophys. Res. Lett., 47, e2020GL087212, https://doi.org/10.1029/2020GL087212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herger, N., B. M. Sanderson, and R. Knutti, 2015: Improved pattern scaling approaches for the use in climate impact studies. Geophys. Res. Lett., 42, 34863494, https://doi.org/10.1002/2015GL063569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keil, P., T. Mauritsen, J. Jungclaus, C. Hedemann, D. Olonscheck, and R. Ghosh, 2020: Multiple drivers of the North Atlantic warming hole. Nat. Climate Change, 10, 667671, https://doi.org/10.1038/s41558-020-0819-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labe, Z., Y. Peings, and G. Magnusdottir, 2020: Warm Arctic, cold Siberia pattern: Role of full Arctic amplification versus sea ice loss alone. Geophys. Res. Lett., 47, e2020GL088583, https://doi.org/10.1029/2020GL088583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., C. Woods, and R. Caballero, 2019: Relation between Arctic moisture flux and tropical temperature biases in CMIP5 simulations and its fingerprint in RCP8.5 projections. Geophys. Res. Lett., 46, 10881096, https://doi.org/10.1029/2018GL080562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, Y., and Coauthors, 2020: Quantification of the Arctic sea ice-driven atmospheric circulation variability in coordinated large ensemble simulations. Geophys. Res. Lett., 47, e2019GL085397, https://doi.org/10.1029/2019GL085397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., and A. V. Fedorov, 2019: Global impacts of Arctic sea ice loss mediated by the Atlantic meridional overturning circulation. Geophys. Res. Lett., 46, 944952, https://doi.org/10.1029/2018GL080602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., A. V. Fedorov, and F. Sévellec, 2019: The mechanisms of the Atlantic meridional overturning circulation slowdown induced by Arctic sea ice decline. J. Climate, 32, 977996, https://doi.org/10.1175/JCLI-D-18-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, H., F. Zheng, N. Keenlyside, and J. Zhu, 2020: Ocean–atmosphere coupled Pacific decadal variability simulated by a climate model. Climate Dyn., 54, 47594773, https://doi.org/10.1007/s00382-020-05248-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, C., C. Hartin, B. Bond-Lamberty, and B. Kravitz, 2016: Exploring global surface temperature pattern scaling methodologies and assumptions from a CMIP5 model ensemble. Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-170.

    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., and Coauthors, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 73727391, https://doi.org/10.1175/JCLI-D-12-00558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marvel, K., G. A. Schmidt, D. Shindell, C. Bonfils, A. N. Legrande, L. Nazarenko, and K. Tsigaridis, 2015: Do responses to different anthropogenic forcings add linearly in climate models? Environ. Res. Lett., 10, 104010, https://doi.org/10.1088/1748-9326/10/10/104010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCusker, K. E., J. C. Fyfe, and M. Sigmond, 2016: Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nat. Geosci., 9, 838842, https://doi.org/10.1038/ngeo2820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCusker, K. E., P. J. Kushner, J. C. Fyfe, M. Sigmond, V. V. Kharin, and C. M. Bitz, 2017: Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas forcing. Geophys. Res. Lett., 44, 79557964, https://doi.org/10.1002/2017GL074327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., 2003: Pattern scaling: An examination of the accuracy of the technique for describing future climates. Climatic Change, 60, 217242, https://doi.org/10.1023/A:1026035305597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, https://doi.org/10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., Y. Kosaka, M. Watanabe, H. Nakamura, and M. Kimoto, 2019a: A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling. Nat. Climate Change, 9, 123129, https://doi.org/10.1038/s41558-018-0379-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., Y. Kosaka, M. Watanabe, B. Taguchi, H. Nakamura, and M. Kimoto, 2019b: Reply to: Is sea-ice-driven Eurasian cooling too weak in models? Nat. Climate Change, 9, 937939, https://doi.org/10.1038/s41558-019-0636-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nummelin, A., M. Ilicak, C. Li, and L. H. Smedsrud, 2016: Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. J. Geophys. Res. Oceans, 121, 617637, https://doi.org/10.1002/2015JC011156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogawa, F., and Coauthors, 2018: Evaluating impacts of recent Arctic sea ice loss on the Northern Hemisphere winter climate change. Geophys. Res. Lett., 45, 32553263, https://doi.org/10.1002/2017GL076502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oudar, T., E. Sanchez-Gomez, F. Chauvin, J. Cattiaux, L. Terray, and C. Cassou, 2017: Respective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the Northern Hemisphere atmospheric circulation. Climate Dyn., 49, 36933713, https://doi.org/10.1007/s00382-017-3541-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J., J. A. Francis, R. Hall, E. Hanna, S.-J. Kim, and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: Are they connected? J. Climate, 28, 79177932, https://doi.org/10.1175/JCLI-D-14-00822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J. Climate, 27, 244264, https://doi.org/10.1175/JCLI-D-13-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., J. Cattiaux, and G. Magnusdottir, 2019: The polar stratosphere as an arbiter of the projected tropical versus polar tug of war. Geophys. Res. Lett., 46, 92619270, https://doi.org/10.1029/2019GL082463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petrie, R. E., L. C. Shaffrey, and R. T. Sutton, 2015: Atmospheric response in summer linked to recent Arctic sea ice loss. Quart. J. Roy. Meteor. Soc., 141, 20702076, https://doi.org/10.1002/qj.2502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Climate Change, 5, 475480, https://doi.org/10.1038/nclimate2554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, M. E. Schelsinger, and J. F. B. Mitchell, 1990: Developing climate scenarios from equilibrium GCM results. Max-Planck-Institut für Meteorologie Tech. Rep. 47, 29 pp., https://mpimet.mpg.de/fileadmin/publikationen/Reports/Report_47.pdf.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and R. Blackport, 2019a: How robust is the atmospheric response to projected Arctic sea ice loss across climate models? Geophys. Res. Lett., 46, 11 40611 415, https://doi.org/10.1029/2019GL084936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and R. Blackport, 2019b: Is sea-ice-driven Eurasian cooling too weak in models? Nat. Climate Change, 9, 934936, https://doi.org/10.1038/s41558-019-0635-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and I. Simmonds, 2012: Local and remote controls on observed Arctic warming. Geophys. Res. Lett., 39, L10709, https://doi.org/10.1029/2012GL051598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, https://doi.org/10.1007/s00382-013-1830-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and L. Sun, 2015: Projected changes in regional climate extremes arising from Arctic sea ice loss. Environ. Res. Lett., 10, 084006, https://doi.org/10.1088/1748-9326/10/8/084006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and Coauthors, 2018: Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nat. Geosci., 11, 155163, https://doi.org/10.1038/s41561-018-0059-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and Coauthors, 2006: The large-scale freshwater cycle of the Arctic. J. Geophys. Res., 111, C11010, https://doi.org/10.1029/2005JC003424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., A. V. Fedorov, and W. Liu, 2017: Arctic sea-ice decline weakens the Atlantic meridional overturning circulation. Nat. Climate Change, 7, 604610, https://doi.org/10.1038/nclimate3353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiogama, H., D. A. Stone, T. Nagashima, T. Nozawa, and S. Emori, 2013: On the linear additivity of climate forcing-response relationships at global and continental scales. Int. J. Climatol., 33, 25422550, https://doi.org/10.1002/joc.3607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skliris, N., R. Marsh, S. A. Josey, S. A. Good, C. Liu, and R. P. Allan, 2014: Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Climate Dyn., 43, 709736, https://doi.org/10.1007/s00382-014-2131-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., N. J. Dunstone, A. A. Scaife, E. K. Fiedler, D. Copsey, and S. C. Hardiman, 2017: Atmospheric response to Arctic and Antarctic sea ice: The importance of ocean–atmosphere coupling and the background state. J. Climate, 30, 45474546, https://doi.org/10.1175/JCLI-D-16-0564.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2019: The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: Investigating the causes and consequences of polar amplification. Geosci. Model Dev., 12, 11391164, https://doi.org/10.5194/gmd-12-1139-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., N. P. Gillett, G. C. Hegerl, D. J. Karoly, D. A. Stone, X. Zhang, and F. Zwiers, 2010: Detection and attribution of climate change: A regional perspective. Wiley Interdiscip. Rev.: Climate Change, 1, 192211, https://doi.org/10.1002/wcc.34.

    • Search Google Scholar
    • Export Citation
  • Sun, L., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Climate, 28, 78247845, https://doi.org/10.1175/JCLI-D-15-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., J. Perlwitz, and M. Hoerling, 2016: What caused the recent “warm Arctic, cold continents” trend pattern in winter temperatures? Geophys. Res. Lett., 43, 53455352, https://doi.org/10.1002/2016GL069024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., M. Alexander, and C. Deser, 2018: Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change. J. Climate, 31, 78237843, https://doi.org/10.1175/JCLI-D-18-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., C. Deser, R. A. Tomas, and M. Alexander, 2020: Global coupled climate response to polar sea ice loss: Evaluating the effectiveness of different ice-constraining approaches. Geophys. Res. Lett., 47, e2019GL085788, https://doi.org/10.1029/2019GL085788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and J. M. Arblaster, 2014: Pattern scaling: Its strengths and limitations, and an update on the latest model simulations. Climatic Change, 122, 459471, https://doi.org/10.1007/s10584-013-1032-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, R. A., C. Deser, L. Sun, R. A. T. And, and C. Deser, 2016: The role of ocean heat transport in the global climate response to projected Arctic sea ice loss. J. Climate, 29, 68416859, https://doi.org/10.1175/JCLI-D-15-0651.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, https://doi.org/10.1007/s10712-014-9284-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, K., C. Deser, L. Sun, and R. A. Tomas, 2018: Fast response of the tropics to an abrupt loss of Arctic sea ice via ocean dynamics. Geophys. Res. Lett., 45, 42644272, https://doi.org/10.1029/2018GL077325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., P. Ceppi, and T. G. Shepherd, 2021: Eurasian cooling in response to Arctic sea-ice loss is not proved by maximum covariance analysis. Nat. Climate Change, 11, 106108, https://doi.org/10.1038/s41558-020-00982-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. L. Delworth, 2015: Analysis of the characteristics and mechanisms of the Pacific decadal oscillation in a suite of coupled models from the Geophysical Fluid Dynamics Laboratory. J. Climate, 28, 76787701, https://doi.org/10.1175/JCLI-D-14-00647.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P., Y. Wu, I. R. Simpson, K. L. Smith, X. Zhang, B. De, and P. Callaghan, 2018: A stratospheric pathway linking a colder Siberia to Barents-Kara Sea ice loss. Sci. Adv., 4, eaat6025, https://doi.org/10.1126/sciadv.aat6025.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1278 0 0
Full Text Views 859 378 40
PDF Downloads 823 301 37