The Future Intensification of the North Atlantic Winter Storm Track: The Key Role of Dynamic Ocean Coupling

Rei Chemke aDepartment of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel

Search for other papers by Rei Chemke in
Current site
Google Scholar
PubMed
Close
,
Laure Zanna bCourant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by Laure Zanna in
Current site
Google Scholar
PubMed
Close
,
Clara Orbe cNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Clara Orbe in
Current site
Google Scholar
PubMed
Close
,
Lori T. Sentman dNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Lori T. Sentman in
Current site
Google Scholar
PubMed
Close
, and
Lorenzo M. Polvani eDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York
fDepartment of Earth and Environmental Sciences, Columbia University, New York, New York
gLamont-Doherty Earth Observatory, Columbia University, New York, New York

Search for other papers by Lorenzo M. Polvani in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climate models project an intensification of the wintertime North Atlantic Ocean storm track, over its downstream region, by the end of this century. Previous studies have suggested that ocean–atmosphere coupling plays a key role in this intensification, but the precise role of the different components of the coupling has not been explored and quantified. In this paper, using a hierarchy of ocean coupling experiments, we isolate and quantify the respective roles of thermodynamic (changes in surface heat fluxes) and dynamic (changes in ocean heat flux convergence) ocean coupling in the projected intensification of North Atlantic transient eddy kinetic energy (TEKE). We show that dynamic coupling accounts for nearly all of the future TEKE strengthening as it overcomes the much smaller effect of surface heat flux changes to weaken the TEKE. We further show that by reducing the Arctic amplification in the North Atlantic, ocean heat flux convergence increases the meridional temperature gradient aloft, causing a larger eddy growth rate and resulting in the strengthening of North Atlantic TEKE. Our results stress the importance of better monitoring and investigating the changes in ocean heat transport, for improving climate change adaptation strategies.

Significance Statement

By the end of this century, the North Atlantic Ocean storm track is projected to intensify on its eastward flank. Such intensification will have large societal impacts, mostly over western Europe. Thus, it is critical to better understand the mechanism underlying the intensification of the storm track. Here we investigate the role of ocean coupling in the future intensification of the North Atlantic storm track and find that ocean heat transport processes are responsible for the strengthening of the storm track. Our results suggest that better monitoring the changes in ocean heat transport will hopefully improve climate change adaption strategies.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rei Chemke, rei.chemke@weizmann.ac.il

Abstract

Climate models project an intensification of the wintertime North Atlantic Ocean storm track, over its downstream region, by the end of this century. Previous studies have suggested that ocean–atmosphere coupling plays a key role in this intensification, but the precise role of the different components of the coupling has not been explored and quantified. In this paper, using a hierarchy of ocean coupling experiments, we isolate and quantify the respective roles of thermodynamic (changes in surface heat fluxes) and dynamic (changes in ocean heat flux convergence) ocean coupling in the projected intensification of North Atlantic transient eddy kinetic energy (TEKE). We show that dynamic coupling accounts for nearly all of the future TEKE strengthening as it overcomes the much smaller effect of surface heat flux changes to weaken the TEKE. We further show that by reducing the Arctic amplification in the North Atlantic, ocean heat flux convergence increases the meridional temperature gradient aloft, causing a larger eddy growth rate and resulting in the strengthening of North Atlantic TEKE. Our results stress the importance of better monitoring and investigating the changes in ocean heat transport, for improving climate change adaptation strategies.

Significance Statement

By the end of this century, the North Atlantic Ocean storm track is projected to intensify on its eastward flank. Such intensification will have large societal impacts, mostly over western Europe. Thus, it is critical to better understand the mechanism underlying the intensification of the storm track. Here we investigate the role of ocean coupling in the future intensification of the North Atlantic storm track and find that ocean heat transport processes are responsible for the strengthening of the storm track. Our results suggest that better monitoring the changes in ocean heat transport will hopefully improve climate change adaption strategies.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rei Chemke, rei.chemke@weizmann.ac.il

Supplementary Materials

    • Supplemental Materials (PDF 1.87 MB)
Save
  • Bellomo, K., M. Angeloni, S. Corti, and J. von Hardenberg, 2021: Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nat. Commun., 12, 3659, https://doi.org/10.1038/s41467-021-24015-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., K. M. Shell, P. R. Gent, D. A. Bailey, G. Danabasoglu, K. C. Armour, M. M. Holland, and J. T. Kiehl, 2012: Climate sensitivity of the Community Climate System Model, version 4. J. Climate, 25, 30533070, https://doi.org/10.1175/JCLI-D-11-00290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2011: The basic ingredients of the North Atlantic storm track. Part II: Sea surface temperatures. J. Atmos. Sci., 68, 17841805, https://doi.org/10.1175/2011JAS3674.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, https://doi.org/10.1175/2010JCLI3228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., G. Zappa, T. G. Shepherd, and J. M. Gregory, 2018: Fast and slow components of the extratropical atmospheric circulation response to CO2 forcing. J. Climate, 31, 10911105, https://doi.org/10.1175/JCLI-D-17-0323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, https://doi.org/10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., 2021: Future changes in the Hadley circulation: The role of ocean heat transport. Geophys. Res. Lett., 48, e2020GL091372, https://doi.org/10.1029/2020GL091372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., and L. M. Polvani, 2018: Ocean circulation reduces the Hadley cell response to increased greenhouse gases. Geophys. Res. Lett., 45, 91979205, https://doi.org/10.1029/2018GL079070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., and L. M. Polvani, 2019: Exploiting the abrupt 4 × CO2 scenario to elucidate tropical expansion mechanisms. J. Climate, 32, 859875, https://doi.org/10.1175/JCLI-D-18-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., and Y. Ming, 2020: Large atmospheric waves will get stronger, while small waves will get weaker by the end of the 21st century. Geophys. Res. Lett., 47, e2020GL090441, https://doi.org/10.1029/2020GL090441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., L. M. Polvani, and C. Deser, 2019: The effect of Arctic Sea ice loss on the Hadley circulation. Geophys. Res. Lett., 46, 963972, https://doi.org/10.1029/2018GL081110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., L. Zanna, and L. M. Polvani, 2020: Identifying a human signal in the North Atlantic warming hole. Nat. Commun., 11, 1540, https://doi.org/10.1038/s41467-020-15285-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., L. M. Polvani, J. E. Kay, and C. Orbe, 2021: Quantifying the role of ocean coupling in Arctic amplification and sea-ice loss over the 21st century. npj Climate Atmos. Sci., 3, 46, https://doi.org/10.1038/s41612-021-00204-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., C. Li, J. J. Wettstein, and N. G. Kvamstø, 2016: North Atlantic storm-track sensitivity to projected sea surface temperature: Local versus remote influences. J. Climate, 29, 69736991, https://doi.org/10.1175/JCLI-D-15-0860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., J. Lehmann, and J. Beckmann, 2015: The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science, 348, 324327, https://doi.org/10.1126/science.1261768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., C. Frankignoul, S. Minobe, and B. Vanniere, 2019: Simulating the midlatitude atmospheric circulation: What might we gain from high-resolution modeling of air-sea interactions? Curr. Climate Change Rep., 5, 390406, https://doi.org/10.1007/s40641-019-00148-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., L. Sun, R. A. Tomas, and J. Screen, 2016: Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss? Geophys. Res. Lett., 43, 21492157, https://doi.org/10.1002/2016GL067792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., G. Gastineau, and Y. Kwon, 2013: The influence of the AMOC variability on the atmosphere in CCSM3. J. Climate, 26, 97749790, https://doi.org/10.1175/JCLI-D-12-00862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gastineau, G., and C. Frankignoul, 2015: Influence of the North Atlantic SST variability on the atmospheric circulation during the twentieth century. J. Climate, 28, 13961416, https://doi.org/10.1175/JCLI-D-14-00424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gastineau, G., F. D’Andrea, and C. Frankignoul, 2013: Atmospheric response to the North Atlantic Ocean variability on seasonal to decadal time scales. Climate Dyn., 40, 23112330, https://doi.org/10.1007/s00382-012-1333-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gervais, M., J. Shaman, and Y. Kushnir, 2019: Impacts of the North Atlantic warming hole in future climate projections: Mean atmospheric circulation and the North Atlantic jet. J. Climate, 32, 26732689, https://doi.org/10.1175/JCLI-D-18-0647.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2017: Understanding the time scales of the tropospheric circulation response to abrupt CO2 forcing in the Southern Hemisphere: Seasonality and the role of the stratosphere. J. Climate, 30, 84978515, https://doi.org/10.1175/JCLI-D-16-0849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., L. C. Shaffrey, and T. J. Woollings, 2014: Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Climate Dyn., 43, 11711182, https://doi.org/10.1007/s00382-013-1883-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., P. Cook, L. C. Shaffrey, and R. Schiemann, 2020: The response of the Northern Hemisphere storm tracks and jet streams to climate change in the CMIP3, CMIP5, and CMIP6 climate models. J. Geophys. Res., 125, e32701, https://doi.org/10.1029/2020JD032701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Coauthors, 2019: Structure and performance of GFDL’s CM4.0 climate model. J. Adv. Model. Earth Syst., 11, 36913727, https://doi.org/10.1029/2019MS001829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, M., and Coauthors, 2020: GISS-E2.1: Configurations and climatology. J. Adv. Mod. Earth Syst., 12, e2019MS002025, https://doi.org/10.1029/2019MS002025.

    • Search Google Scholar
    • Export Citation
  • Kim, W. M., S. Yeager, P. Chang, and G. Danabasoglu, 2018: Low-frequency North Atlantic climate variability in the Community Earth System Model Large Ensemble. J. Climate, 31, 787813, https://doi.org/10.1175/JCLI-D-17-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehmann, J., D. Coumou, K. Frieler, A. V. Eliseev, and A. Levermann, 2014: Future changes in extratropical storm tracks and baroclinicity under climate change. Environ. Res. Lett., 9, 084002, https://doi.org/10.1088/1748-9326/9/8/084002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Climate, 17, 857876, https://doi.org/10.1175/1520-0442(2004)017<0857:TEONAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: Energy in midlatitude transient eddies in idealized simulations of changed climates. J. Climate, 21, 57975806, https://doi.org/10.1175/2008JCLI2099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2011: RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 3357, https://doi.org/10.1007/s10584-011-0149-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett., 37, L16707, https://doi.org/10.1029/2010GL044136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instability in earth’s oceans. J. Mar. Res., 65, 655683, https://doi.org/10.1357/002224007783649484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, A., and Coauthors, 2020: Ocean-only FAFMIP: Understanding regional patterns of ocean heat content and dynamic sea level change. J. Adv. Model. Earth Syst., 12, e02027, https://doi.org/10.1029/2019MS002027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., J. M. Gregory, J. G. Pinto, M. Reyers, and D. J. Brayshaw, 2012: Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. Nat. Geosci., 5, 313317, https://doi.org/10.1038/ngeo1438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuval, J., and Y. Kaspi, 2020: Eddy activity response to global warming-like temperature changes. J. Climate, 33, 13811404, https://doi.org/10.1175/JCLI-D-19-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., L. C. Shaffrey, K. I. Hodges, P. G. Sansom, and D. B. Stephenson, 2013: A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Climate, 26, 58465862, https://doi.org/10.1175/JCLI-D-12-00573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 934 0 0
Full Text Views 1470 574 41
PDF Downloads 802 273 25