Subseasonal Meteorological Drought Development over the Central United States during Spring

Bor-Ting Jong aNOAA Physical Sciences Laboratory, Boulder, Colorado
bNOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
cProgram in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Bor-Ting Jong in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0627-9650
,
Matthew Newman aNOAA Physical Sciences Laboratory, Boulder, Colorado
dCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Matthew Newman in
Current site
Google Scholar
PubMed
Close
, and
Andrew Hoell aNOAA Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Andrew Hoell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Diagnosis of rapidly developing springtime droughts in the central United States has mostly been made via numerous individual case studies rather than in an aggregate sense. This study investigates common aspects of subseasonal “meteorological drought” evolution, here defined as persistent precipitation minus evapotranspiration (P − ET) deficits, revealed in early (1 April–15 May) and late (16 May–30 June) spring composites of 5-day running mean JRA-55 reanalysis data for three different central U.S. regions during 1958–2018. On average, these droughts are initiated by a quasi-stationary Rossby wave packet (RWP), propagating from the western North Pacific, which arises about a week prior to drought onset. The RWP is related to a persistent ridge west of the incipient drought region and strong subsidence over it. This subsidence is associated with low-level divergent flow that dries the atmosphere and suppresses precipitation for roughly 1–2 weeks, and generally has a greater impact on the local moisture budget than does reduced poleward moisture transport. The resulting “dynamically driven” evaporative demand corresponds to a rapid drying of the root-zone soil moisture, which decreases around 40 percentiles within about 10 days. Anomalous near-surface warmth develops only after the P − ET deficit onset, as does anomalously low soil moisture that then lingers a month or more, especially in late spring. The horizontal scale of the RWPs, and of the related drought anomalies, decreases from early to late spring, consistent with the climatological change in the Pacific Rossby waveguide. Finally, while this composite analysis is based upon strong, persistent P − ET deficits, it still appears to capture much of the springtime development of “flash droughts” as well.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bor-Ting Jong, bor-ting.jong@noaa.gov

Abstract

Diagnosis of rapidly developing springtime droughts in the central United States has mostly been made via numerous individual case studies rather than in an aggregate sense. This study investigates common aspects of subseasonal “meteorological drought” evolution, here defined as persistent precipitation minus evapotranspiration (P − ET) deficits, revealed in early (1 April–15 May) and late (16 May–30 June) spring composites of 5-day running mean JRA-55 reanalysis data for three different central U.S. regions during 1958–2018. On average, these droughts are initiated by a quasi-stationary Rossby wave packet (RWP), propagating from the western North Pacific, which arises about a week prior to drought onset. The RWP is related to a persistent ridge west of the incipient drought region and strong subsidence over it. This subsidence is associated with low-level divergent flow that dries the atmosphere and suppresses precipitation for roughly 1–2 weeks, and generally has a greater impact on the local moisture budget than does reduced poleward moisture transport. The resulting “dynamically driven” evaporative demand corresponds to a rapid drying of the root-zone soil moisture, which decreases around 40 percentiles within about 10 days. Anomalous near-surface warmth develops only after the P − ET deficit onset, as does anomalously low soil moisture that then lingers a month or more, especially in late spring. The horizontal scale of the RWPs, and of the related drought anomalies, decreases from early to late spring, consistent with the climatological change in the Pacific Rossby waveguide. Finally, while this composite analysis is based upon strong, persistent P − ET deficits, it still appears to capture much of the springtime development of “flash droughts” as well.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bor-Ting Jong, bor-ting.jong@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 1.46 MB)
Save
  • AghaKouchak, A., 2014: A baseline probabilistic drought forecasting framework using standardized soil moisture index: Application to the 2012 United States drought. Hydrol. Earth Syst. Sci., 18, 24852492, https://doi.org/10.5194/hess-18-2485-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agrawal, S., C. R. Ferguson, L. Bosart, and D. A. Burrows, 2021: Teleconnections governing the interannual variability of Great Plains low-level jets in May. J. Climate, 34, 47854806, https://doi.org/10.1175/JCLI-D-20-0451.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, W., R. Seager, W. Baethgen, and M. Cane, 2017: Life cycles of agriculturally relevant ENSO teleconnections in North and South America. Int. J. Climatol., 37, 32973318, https://doi.org/10.1002/joc.4916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., N. Wolfson, and J. Terry, 1993: The effect of SST and soil moisture anomalies on GLA model simulations of the 1988 U.S. summer drought. J. Climate, 6, 20342048, https://doi.org/10.1175/1520-0442(1993)006<2034:TEOSAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basara, J. B., J. I. Christian, R. A. Wakefield, J. A. Otkin, E. H. Hunt, and D. P. Brown, 2019: The evolution, propagation, and spread of flash drought in the Central United States during 2012. Environ. Res. Lett., 14, 084025, https://doi.org/10.1088/1748-9326/ab2cc0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, A., B. R. Lintner, K. L. Findell, S. Malyshev, P. C. Loikith, and P. Gentine, 2014: Impact of soil moisture–atmosphere interactions on surface temperature distribution. J. Climate, 27, 79767993, https://doi.org/10.1175/JCLI-D-13-00591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2014: Long-lived response of the midlatitude circulation and storm tracks to pulses of tropical heating. J. Climate, 27, 88098826, https://doi.org/10.1175/JCLI-D-14-00312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breeden, M. L., A. H. Butler, J. R. Albers, M. Sprenger, and A. O. Langford, 2021: The spring transition of the North Pacific jet and its relation to deep stratosphere-to-troposphere mass transport over western North America. Atmos. Chem. Phys., 21, 27812794, https://doi.org/10.5194/acp-21-2781-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, F.-C., and J. M. Wallace, 1987: Meteorological conditions during heat waves and droughts in the United States Great Plains. Mon. Wea. Rev., 115, 12531269, https://doi.org/10.1175/1520-0493(1987)115<1253:MCDHWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L. G., A. Hartman, B. Pugh, J. Gottschalck, and D. Miskus, 2020: Real-time prediction of areas susceptible to flash drought development. Atmosphere, 11, 1114, https://doi.org/10.3390/atmos11101114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, P., and M. Newman, 1998: Rossby wave propagation and the rapid development of upper-level anomalous anticyclones during the 1988 U.S. drought. J. Climate, 11, 24912504, https://doi.org/10.1175/1520-0442(1998)011<2491:RWPATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, J. I., J. B. Basara, J. A. Otkin, E. D. Hunt, R. A. Wakefield, P. X. Flanagan, and X. Xiao, 2019: A methodology for flash drought identification: Application of flash drought frequency across the United States. J. Hydrometeor., 20, 833846, https://doi.org/10.1175/JHM-D-18-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., R. Seager, and R. L. Miller, 2011: Atmospheric circulation anomalies during two persistent North American droughts: 1932–1939 and 1948–1957. Climate Dyn., 36, 23392355, https://doi.org/10.1007/s00382-010-0807-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeAngelis, A. M., H. Wang, R. D. Koster, S. D. Schubert, Y. Chang, and J. Marshak, 2020: Prediction skill of the 2012 U.S. Great Plains flash drought in subseasonal experiment (SubX) models. J. Climate, 33, 62296253, https://doi.org/10.1175/JCLI-D-19-0863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., 1983: Drought in the United States: Some aspects of major dry and wet periods in the contiguous United States, 1895–1981. J. Appl. Meteor. Climatol., 22, 316, https://doi.org/10.1175/1520-0450(1983)022<0003:DITUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R., and N. D. Gordon, 1983: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistent characteristics. Mon. Wea. Rev., 111, 15671586, https://doi.org/10.1175/1520-0493(1983)111<1567:PAOTEN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, X., and Coauthors, 2011: Investigation of the 2006 drought and 2007 flood extremes at the southern Great Plains through an integrative analysis of observations. J. Geophys. Res., 116, D03204, https://doi.org/10.1029/2010JD014776.

    • Search Google Scholar
    • Export Citation
  • Englehart, P. J., and A. V. Douglas, 2003: Assessing warm season drought episodes in the central United States. J. Climate, 16, 18311842, https://doi.org/10.1175/1520-0442(2003)016<1831:AWSDEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erfanian, A., and R. Fu, 2019: The role of spring dry zonal advection in summer drought onset over the US Great Plains. Atmos. Chem. Phys., 19, 15 19915 216, https://doi.org/10.5194/acp-19-15199-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernando, D. N., and Coauthors, 2016: What caused the spring intensification and winter demise of the 2011 drought over Texas? Climate Dyn., 47, 30773090, https://doi.org/10.1007/s00382-016-3014-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, T. W., and C. F. Labosier, 2017: Meteorological conditions associated with the onset of flash drought in the eastern United States. Agric. For. Meteor., 247, 414423, https://doi.org/10.1016/j.agrformet.2017.08.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerken, T., G. T. Bromley, B. L. Ruddell, S. Williams, and P. C. Stoy, 2018: Convective suppression before and during the United States northern Great Plains flash drought of 2017. Hydrol. Earth Syst. Sci., 22, 41554163, https://doi.org/10.5194/hess-22-4155-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghannam, K., T. Nakai, A. Paschalis, C. A. Oishi, A. Kotani, Y. Igarashi, T. Kumagai, and G. G. Katul, 2016: Persistence and memory timescales in root-zone soil moisture dynamics. Water Resour. Res., 52, 14271445, https://doi.org/10.1002/2015WR017983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, N. C., B. L. Allen, R. L. Baumhardt, and D. J. Lyon, 2012: Research achievements and adoption of no-till, dryland cropping in the semi-arid U.S. Great Plains. Field Crops Res., 132, 196203, https://doi.org/10.1016/j.fcr.2012.02.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, Z., V. P. Singh, and Y. Xia, 2018: Seasonal drought prediction: Advances, challenges, and future prospects. Rev. Geophys., 56, 108141, https://doi.org/10.1002/2016RG000549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harding, K. J., and P. K. Snyder, 2015: The relationship between the Pacific–North American teleconnection pattern, the Great Plains low-level jet, and north central U.S. heavy rainfall events. J. Climate, 28, 67296742, https://doi.org/10.1175/JCLI-D-14-00657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbins, M. T., A. Wood, D. J. Mcevoy, J. L. Huntington, C. Morton, M. Anderson, and C. Hain, 2016: The Evaporative Demand Drought Index. Part I: Linking drought evolution to variations in evaporative demand. J. Hydrometeor., 17, 17451761, https://doi.org/10.1175/JHM-D-15-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., J. Perlwitz, C. Dewes, K. Wolter, I. Rangwala, X.-W. Quan, and J. Eischeid, 2019a: Anthropogenic contributions to the intensity of the 2017 United States northern Great Plains drought (in “Explaining Extreme Events of 2017 from a Climate Perspective”). Bull. Amer. Meteor. Soc., 100(1), S19S24, https://doi.org/10.1175/BAMS-D-18-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., J. Perlwitz, and J. Eischeid, 2019b: Drought assessment report: The causes, predictability, and historical context of the 2017 U.S. northern Great Plains drought. National Integrated Drought Information System Rep., 27 pp., https://www.drought.gov/sites/default/files/2020-09/2017-NGP-drought-assessment.pdf.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., and Coauthors, 2020: Lessons learned from the 2017 flash drought across the U.S. northern Great Plains and Canadian prairies. Bull. Amer. Meteor. Soc., 101, E2171E2185, https://doi.org/10.1175/BAMS-D-19-0272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and Coauthors, 2013: Anatomy of an extreme event. J. Climate, 26, 28112832, https://doi.org/10.1175/JCLI-D-12-00270.1.

  • Hoerling, M. P., J. Eischeid, A. Kumar, A. Mariotti, K. C. Mo, S. D. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, https://doi.org/10.1175/BAMS-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and E. Kalnay, 2000: Role of sea surface temperature and soil-moisture feedback in the 1998 Oklahoma–Texas drought. Nature, 408, 842844, https://doi.org/10.1038/35048548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2019: The annual cycle of Northern Hemisphere storm tracks. Part II: Regional detail. J. Climate, 32, 17611775, https://doi.org/10.1175/JCLI-D-17-0871.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q. I., and G. Buyanovsky, 2003: Climate effects on corn yield in Missouri. J. Appl. Meteor. Climatol., 42, 16261635, https://doi.org/10.1175/1520-0450(2003)042<1626:CEOCYI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C., S. W. Duiker, L. Deng, C. Fang, and W. Zeng, 2015: Influence of precipitation on maize yield in the eastern United States. Sustainability, 7, 59966010, https://doi.org/10.3390/su7055996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, E. D., K. G. Hubbard, D. A. Wilhite, T. J. Arkebauer, and A. L. Dutcher, 2009: The development and evaluation of a soil moisture index. Int. J. Climatol., 29, 747759, https://doi.org/10.1002/joc.1749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JMA, 2014: JRA-55 product users’ handbook. Climate Prediction Division, Japan Meteorological Agency, 27 pp., https://rda.ucar.edu/datasets/ds628.0/docs/JRA-55.handbook_TL319_en.pdf.

    • Search Google Scholar
    • Export Citation
  • Kam, J., J. Sheffield, X. Yuan, and E. F. Wood, 2014: Did a skillful prediction of sea surface temperatures help or hinder forecasting of the 2012 Midwestern US drought? Environ. Res. Lett., 9, 034005, https://doi.org/10.1088/1748-9326/9/3/034005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and R. G. Quayle, 1981: The 1980 summer heat wave and drought in historical perspective. Mon. Wea. Rev., 109, 20552073, https://doi.org/10.1175/1520-0493(1981)109<2055:TSHWAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. D. Schubert, and M. J. Suarez, 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341, https://doi.org/10.1175/2008JCLI2718.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. D. Schubert, H. Wang, S. P. Mahanama, and A. M. DeAngelis, 2019: Flash drought as captured by reanalysis data: Disentangling the contributions of precipitation deficit and excess evapotranspiration. J. Hydrometeor., 20, 12411258, https://doi.org/10.1175/JHM-D-18-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Chen, M. Hoerling, and J. Eischeid, 2013: Do extreme climate events require extreme forcings? Geophys. Res. Lett., 40, 34403445, https://doi.org/10.1002/grl.50657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., P. Wu, and Z. Ma, 2020: A comprehensive evaluation of soil moisture and soil temperature from third-generation atmospheric and land reanalysis data sets. Int. J. Climatol., 40, 57445766, https://doi.org/10.1002/joc.6549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lisonbee, J., M. Woloszyn, and M. Skumanich, 2021: Making sense of flash drought: Definitions, indicators, and where we go from here. J. Appl. Serv. Climatol., 2021 (1), 119, https://doi.org/10.46275/JOASC.2021.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, A. Z., M. Ting, and H. Wang, 1998: Maintenance of circulation anomalies during the 1988 drought and 1993 floods over the United States. J. Atmos. Sci., 55, 28102832, https://doi.org/10.1175/1520-0469(1998)055<2810:MOCADT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., and M. P. Hoerling, 2016: The physics of drought in the U.S. central Great Plains. J. Climate, 29, 67836804, https://doi.org/10.1175/JCLI-D-15-0697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyon, B., and R. Dole, 1995: A diagnostic comparison of the 1980 and 1988 U.S. summer heat wave–droughts. J. Climate, 8, 16581675, https://doi.org/10.1175/1520-0442(1995)008<1658:ADCOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. L., G. M. Lackmann, and W. A. Robinson, 2020: A new variable-threshold persistent anomaly index: Northern Hemisphere anomalies in the ERA-Interim reanalysis. Mon. Wea. Rev., 148, 4362, https://doi.org/10.1175/MWR-D-19-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2011: Drought onset and recovery over the United States. J. Geophys. Res., 116, D20106, https://doi.org/10.1029/2011JD016168.

  • Mo, K. C., and D. P. Lettenmaier, 2015: Heat wave flash droughts in decline. Geophys. Res. Lett., 42, 28232829, https://doi.org/10.1002/2015GL064018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and D. P. Lettenmaier, 2016: Precipitation deficit flash droughts over the United States. J. Hydrometeor., 17, 11691184, https://doi.org/10.1175/JHM-D-15-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., J. R. Zimmerman, E. Kalnay, and M. Kanamitsu, 1991: A GCM study of the 1988 United States drought. Mon. Wea. Rev., 119, 15121532, https://doi.org/10.1175/1520-0493(1991)119<1512:AGSOTU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., J. N. Paegle, and R. W. Higgins, 1997: Atmospheric processes associated with summer floods and droughts in the central United States. J. Climate, 10, 30283046, https://doi.org/10.1175/1520-0442(1997)010<3028:APAWSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1982: Anatomy of Great Plains protracted heat waves (especially the 1980 U.S. summer drought). Mon. Wea. Rev., 110, 824838, https://doi.org/10.1175/1520-0493(1982)110<0824:AOGPPH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1983: Some causes of United States drought. J. Appl. Meteor. Climatol., 22, 3039, https://doi.org/10.1175/1520-0450(1983)022<0030:SCOUSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1991: Spring and summer 1988 drought over the contiguous United States—Causes and prediction. J. Climate, 4, 5465, https://doi.org/10.1175/1520-0442(1991)004<0054:SASDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and P. D. Sardeshmukh, 1998: The impact of the annual cycle on the North Pacific/North American response to remote low-frequency forcing. J. Atmos. Sci., 55, 13361353, https://doi.org/10.1175/1520-0469(1998)055<1336:TIOTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., G. N. Kiladis, K. M. Weickmann, M. F. Ralph, and P. D. Sardeshmukh, 2012: Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Climate, 25, 73417361, https://doi.org/10.1175/JCLI-D-11-00665.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NIDIS, 2021: Drought basics: Types of drought. National Integrated Drought Information System, accessed 2021, https://www.drought.gov/what-is-drought/drought-basics#types-of-drought.

    • Search Google Scholar
    • Export Citation
  • Oleson, K., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp., https://doi.org/10.5065/D6RR1W7M.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, I. E. Mladenova, J. B. Basara, and M. Svoboda, 2013: Examining rapid onset drought development using the thermal infrared-based evaporative stress index. J. Hydrometeor., 14, 10571074, https://doi.org/10.1175/JHM-D-12-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. C. Anderson, C. Hain, and M. Svoboda, 2014: Examining the relationship between drought development and rapid changes in the evaporative stress index. J. Hydrometeor., 15, 938956, https://doi.org/10.1175/JHM-D-13-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., and Coauthors, 2016: Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agric. For. Meteor., 218–219, 230242, https://doi.org/10.1016/j.agrformet.2015.12.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., M. Svoboda, E. D. Hunt, T. W. Ford, M. C. Anderson, C. Hain, and J. B. Basara, 2018: Flash droughts: A review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull. Amer. Meteor. Soc., 99, 911919, https://doi.org/10.1175/BAMS-D-17-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PaiMazumder, D., and J. M. Done, 2016: Potential predictability sources of the 2012 U.S. drought in observations and a regional model ensemble. J. Geophys. Res. Atmos., 121, 12 58112 592, https://doi.org/10.1002/2016JD025322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Č. Branković, 1989: The 1988 US drought linked to anomalous sea surface temperature. Nature, 338, 5457, https://doi.org/10.1038/338054a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Pendergrass, A. G., and Coauthors, 2020: Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Climate Change, 10, 191199, https://doi.org/10.1038/s41558-020-0709-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, X.-W., M. P. Hoerling, B. Lyon, A. Kumar, M. A. Bell, M. K. Tippett, and H. Wang, 2012: Prospects for dynamical prediction of meteorological drought. J. Appl. Meteor. Climatol., 51, 12381252, https://doi.org/10.1175/JAMC-D-11-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roy, T., J. A. Martinez, J. E. Herrera-Estrada, Y. U. Zhang, F. Dominguez, A. Berg, M. Ek, and E. F. Wood, 2019: Role of moisture transport and recycling in characterizing droughts: Perspectives from two recent U.S. droughts and the CFSv2 system. J. Hydrometeor., 20, 139154, https://doi.org/10.1175/JHM-D-18-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, N., P. J. Sellers, D. A. Randall, E. K. Schneider, J. Shukla, J. L. Kinter III, and E. Albertazzi, 1989: Effects of implementing the simple biosphere model in a general circulation model. J. Atmos. Sci., 46, 27572782, https://doi.org/10.1175/1520-0469(1989)046<2757:EOITSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scannell, H. A., A. J. Pershing, M. A. Alexander, A. C. Thomas, and K. E. Mills, 2016: Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophys. Res. Lett., 43, 20692076, https://doi.org/10.1002/2015GL067308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiraldi, N. J., and P. E. Roundy, 2017: The evolution of agricultural drought transition periods in the U.S. Corn Belt. Mon. Wea. Rev., 145, 451472, https://doi.org/10.1175/MWR-D-16-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., H. M. Helfand, C.-Y. Wu, and W. Min, 1998: Subseasonal variations in warm-season moisture transport and precipitation over the central and eastern United States. J. Climate, 11, 25302555, https://doi.org/10.1175/1520-0442(1998)011<2530:SVIWSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and Coauthors, 2016: Global meteorological drought: A synthesis of current understanding with a focus on SST drivers of precipitation deficits. J. Climate, 29, 39894019, https://doi.org/10.1175/JCLI-D-15-0452.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Henderson, 2013: Diagnostic computation of moisture budgets in the ERA-Interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Climate, 26, 78767901, https://doi.org/10.1175/JCLI-D-13-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and M. Hoerling, 2014: Atmosphere and ocean origins of North American droughts. J. Climate, 27, 45814606, https://doi.org/10.1175/JCLI-D-13-00329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., L. Goddard, J. Nakamura, N. Henderson, and D. E. Lee, 2014: Dynamical causes of the 2010/11 Texas–northern Mexico drought. J. Hydrometeor., 15, 3968, https://doi.org/10.1175/JHM-D-13-024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., J. Nakamura, and M. Ting, 2019: Mechanisms of seasonal soil moisture drought onset and termination in the southern Great Plains. J. Hydrometeor., 20, 751771, https://doi.org/10.1175/JHM-D-18-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., J. Nakamura, and M. Ting, 2020: Prediction of seasonal meteorological drought onset and termination over the southern Great Plains in the North American Multimodel Ensemble. J. Hydrometeor., 21, 22372255, https://doi.org/10.1175/JHM-D-20-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sebastian, D. E., A. Pathak, and S. Ghosh, 2016: Use of atmospheric budget to reduce uncertainty in estimated water availability over South Asia from difference reanalyses. Sci. Rep., 6, 29664, https://doi.org/10.1038/srep29664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A Simple Biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 505531, https://doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and G. W. Branstator, 1992: Issues in establishing causes of the 1988 drought over North America. J. Climate, 5, 159172, https://doi.org/10.1175/1520-0442(1992)005<0159:IIECOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. Guillemot, 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9, 12881298, https://doi.org/10.1175/1520-0442(1996)009<1288:PPIITD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, and P. A. Arkin, 1988: Origins of the 1988 North American drought. Science, 242, 16401645, https://doi.org/10.1126/science.242.4886.1640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, https://doi.org/10.1175/2011JCLI4171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Loon, A. F., and Coauthors, 2016: Drought in the Anthropocene. Nat. Geosci., 9, 8991, https://doi.org/10.1038/ngeo2646.

  • Viovy, N., and P. Ciais, 2011: CRUNCEP data set for 1901–2008. North American Carbon Program, Oak Ridge National Laboratory, accessed 2020, ftp://nacp.ornl.gov/synthesis/2009/frescati/temp/land_use_change/original/readme.htm.

    • Search Google Scholar
    • Export Citation
  • Wang, H., S. D. Schubert, R. Koster, Y.-G. Ham, and M. Suarez, 2014: On the role of SST forcing in the 2011 and 2012 extreme U.S. heat and drought: A study in contrasts. J. Hydrometeor., 15, 12551273, https://doi.org/10.1175/JHM-D-13-069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., S. D. Schubert, and R. D. Koster, 2017: North American drought and links to northern Eurasia: The role of stationary Rossby waves. Climate Extremes: Mechanisms and Potential Prediction, S-.Y. S. Wang et al., Eds., Amer. Geophys. Union, 195221.

    • Crossref
    • Search Google Scholar
    • Export Citation