Climatic Effects of the Indian Ocean Tripole on the Western United States in Boreal Summer

Yazhou Zhang aFrontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES)/Key Laboratory of Physical Oceanography/Academy of the Future Ocean/College of Oceanic and Atmospheric Science, Ocean University of China, Qingdao, China

Search for other papers by Yazhou Zhang in
Current site
Google Scholar
PubMed
Close
,
Jianping Li aFrontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES)/Key Laboratory of Physical Oceanography/Academy of the Future Ocean/College of Oceanic and Atmospheric Science, Ocean University of China, Qingdao, China
bLaboratory for Ocean Dynamics and Climate, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Jianping Li in
Current site
Google Scholar
PubMed
Close
,
Zhaolu Hou aFrontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES)/Key Laboratory of Physical Oceanography/Academy of the Future Ocean/College of Oceanic and Atmospheric Science, Ocean University of China, Qingdao, China

Search for other papers by Zhaolu Hou in
Current site
Google Scholar
PubMed
Close
,
Bin Zuo aFrontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES)/Key Laboratory of Physical Oceanography/Academy of the Future Ocean/College of Oceanic and Atmospheric Science, Ocean University of China, Qingdao, China

Search for other papers by Bin Zuo in
Current site
Google Scholar
PubMed
Close
,
Yidan Xu cDepartment of Earth System Science, Tsinghua University, Beijing, China
dNational Supercomputing Center in Wuxi, Wuxi, China

Search for other papers by Yidan Xu in
Current site
Google Scholar
PubMed
Close
,
Xinxin Tang aFrontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES)/Key Laboratory of Physical Oceanography/Academy of the Future Ocean/College of Oceanic and Atmospheric Science, Ocean University of China, Qingdao, China

Search for other papers by Xinxin Tang in
Current site
Google Scholar
PubMed
Close
, and
Hao Wang aFrontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES)/Key Laboratory of Physical Oceanography/Academy of the Future Ocean/College of Oceanic and Atmospheric Science, Ocean University of China, Qingdao, China

Search for other papers by Hao Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Indian Ocean tripole (IOT) is an independent mode of ocean–atmosphere circulation centered on the tropical Indian Ocean. This study explores the physical mechanisms of the IOT affecting the western United States climate variation during the boreal summer. We find that the IOT is significantly correlated with both western United States summer surface temperature and precipitation anomalies. During positive IOT events, the westerly wind anomalies over the northern Indian Ocean are intensified by two cross-equator airflows over the tropical eastern Indian Ocean and the east coast of Africa. The resulting convergence of air over the northern Bay of Bengal–Indochina Peninsula–northern South China Sea (NBB–IP–NSCS) region (15°–25°N, 80°–125°E) exacerbates the surplus precipitation there. Serving as a heat source, these NBB–IP–NSCS precipitation anomalies can excite a circumglobal teleconnection (CGT)-like pattern that propagates eastward from west-central Asia toward North America along the Asia subtropical westerly jet, further influencing local circulation anomalies. Development of strong anticyclonic circulation over the western United States enhances descending motion and divergence there, resulting in negative precipitation anomalies. This circulation anomaly also induces the diabatic heating anomalies through allowing more solar radiation to reach the ground surface, further increasing the surface temperature anomalies. Meanwhile, the increased tropospheric temperature also raises local surface temperatures by modulating the adiabatic air expansion and compression. Ultimately, the CGT-like pattern associated with NBB–IP–NSCS precipitation anomalies sets up an atmospheric bridge by which the IOT can impact summer climate in the western United States.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianping Li, ljp@ouc.edu.cn

Abstract

The Indian Ocean tripole (IOT) is an independent mode of ocean–atmosphere circulation centered on the tropical Indian Ocean. This study explores the physical mechanisms of the IOT affecting the western United States climate variation during the boreal summer. We find that the IOT is significantly correlated with both western United States summer surface temperature and precipitation anomalies. During positive IOT events, the westerly wind anomalies over the northern Indian Ocean are intensified by two cross-equator airflows over the tropical eastern Indian Ocean and the east coast of Africa. The resulting convergence of air over the northern Bay of Bengal–Indochina Peninsula–northern South China Sea (NBB–IP–NSCS) region (15°–25°N, 80°–125°E) exacerbates the surplus precipitation there. Serving as a heat source, these NBB–IP–NSCS precipitation anomalies can excite a circumglobal teleconnection (CGT)-like pattern that propagates eastward from west-central Asia toward North America along the Asia subtropical westerly jet, further influencing local circulation anomalies. Development of strong anticyclonic circulation over the western United States enhances descending motion and divergence there, resulting in negative precipitation anomalies. This circulation anomaly also induces the diabatic heating anomalies through allowing more solar radiation to reach the ground surface, further increasing the surface temperature anomalies. Meanwhile, the increased tropospheric temperature also raises local surface temperatures by modulating the adiabatic air expansion and compression. Ultimately, the CGT-like pattern associated with NBB–IP–NSCS precipitation anomalies sets up an atmospheric bridge by which the IOT can impact summer climate in the western United States.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianping Li, ljp@ouc.edu.cn
Save
  • An, X. D., L. F. Sheng, and J. P. Li, 2021: Synergistic effect of SST anomalies in the North Pacific and North Atlantic on summer surface air temperature over the Mongolian Plateau. Climate Dyn., 56, 14491465, https://doi.org/10.1007/s00382-020-05541-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. Berbery, 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J. Climate, 14, 21052128, https://doi.org/10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barth, N. A., G. Villarini, M. A. Nayak, and K. White, 2017: Mixed populations and annual flood frequency estimates in the western United States: The role of atmospheric rivers. Water Resour. Res., 53, 257269, https://doi.org/10.1002/2016WR019064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2001: Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28, 327330, https://doi.org/10.1029/2000GL011451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnidov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12, 28812893, https://doi.org/10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S., 2003: Measures of economic impacts of weather extremes. Bull. Amer. Meteor. Soc., 84, 12311236, https://doi.org/10.1175/BAMS-84-9-1231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and O. B. Christensen, 2003: Severe summertime flooding in Europe. Nature, 421, 805806, https://doi.org/10.1038/421805a.

  • Cook, E. R., C. A. Woodhouse, C. M. Eakin, D. M. Meko, and D. W. Stahle, 2004: Long-term aridity changes in the western United States. Science, 306, 10151018, https://doi.org/10.1126/science.1102586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corringham, T. W., and D. R. Cayan, 2019: The effect of El Niño on flood damages in the western United States. Wea. Climate Soc., 11, 489504, https://doi.org/10.1175/WCAS-D-18-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corringham, T. W., F. M. Ralph, A. Gershunov, D. R. Cayan, and C. A. Talbot, 2019: Atmospheric rivers drive flood damages in the western United States. Sci. Adv., 5, eaax4631, https://doi.org/10.1126/sciadv.aax4631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, F., and Coauthors, 2018: Tracking an atmospheric river in a warmer climate: From water vapor to economic impacts. Earth Syst. Dyn., 9, 249266, https://doi.org/10.5194/esd-9-249-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, S., Q. Hu, and R. J. Oglesby, 2011: Influence of Atlantic sea surface temperatures on persistent drought in North America. Climate Dyn., 37, 569586, https://doi.org/10.1007/s00382-010-0835-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., C. Johanson, S. Warren, S. Warren, and D. Seidel, 2004: Contribution of stratospheric cooling to satellite-inferred tropospheric temperature trends. Nature, 429, 5558, https://doi.org/10.1038/nature02524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goddard, L., A. Kumar, M. P. Hoerling, and A. G. Barnston, 2006: Diagnosis of anomalous winter temperature over the eastern United Sates during the 2002/03 El Niño. J. Climate, 19, 56245636, https://doi.org/10.1175/JCLI3930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350, https://doi.org/10.1175/JCLI3339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and D. P. Lettenmaier, 2007: Effects of 20th century warming and climate variability on flood risk in the western U.S. Water Resour. Res., 43, W06427, https://doi.org/10.1029/2006WR005099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z. Q., and R. G. Wu, 2014: Indo-Pacific remote forcing in summer rainfall variability over the South China Sea. Climate Dyn., 42, 23232337, https://doi.org/10.1007/s00382-014-2123-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Holton, J. R., and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology. 5th ed., Academic Press, 552 pp., https://doi.org/10.1016/C2009-0-63394-8.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B. Y., P. W. Thorne, V. F. Banzon, T. Boyer, and H. M. Zhang, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTV5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, E. J. Nelkin, and R. F. Adler, 2015: GPCP version 2.2 Combined Precipitation Data Set. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D6R78C9S.

    • Search Google Scholar
    • Export Citation
  • Jiang, P., Z. Yu, and M. R. Gautam, 2013: Pacific and Atlantic Ocean influence on the spatiotemporal variability of heavy precipitation in the western United States. Global Planet. Change, 109, 3845, https://doi.org/10.1016/j.gloplacha.2013.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. Yang, J. Hnilo, M. Fiorino, and G. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konrad, C. P., and M. D. Dettinger, 2017: Flood runoff in relation to water vapor transport by atmospheric rivers over the western United States, 1949–2015. Geophys. Res. Lett., 44, 11 45611 462, https://doi.org/10.1002/2017GL075399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, K. Redmond, and K. Hubbard, 2003: Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophys. Res. Lett., 30, 307336, https://doi.org/10.1029/2003GL018052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., R. Seager, M. Ting, N. Naik, and J. Nakamura, 2010: Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J. Climate, 23, 56105628, https://doi.org/10.1175/2010JCLI3172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, https://doi.org/10.1029/2005GL022738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., K. M. Kim, and S. Shen, 2002: Potential predictability of seasonal precipitation over the United States from canonical ensemble correlation predictions. Geophys. Res. Lett., 29, 1097, https://doi.org/10.1029/2001GL014263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., J. Y. Lee, K. M. Kim, and I. S. Kang, 2004: The North Pacific as a regulator of summertime climate over Eurasia and North America. J. Climate, 17, 819833, https://doi.org/10.1175/1520-0442(2004)017<0819:TNPAAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., A. Leetmaa, and M. J. Nath, 2008: Interactions between the responses of North American climate to El Niño–La Niña and to the secular warming trend in the Indian–western Pacific Oceans. J. Climate, 21, 476494, https://doi.org/10.1175/2007JCLI1899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., and M. A. Palecki, 1992: The Pacific/North American teleconnection pattern and United States climate. Part II: Temporal characteristics and index specification. J. Climate, 5, 707716, https://doi.org/10.1175/1520-0442(1992)005<0707:TPATPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., B. Yarnal, and M. A. Palecki, 1991: The Pacific/North American teleconnection pattern and United States climate. Part I: Regional temperature and precipitation associations. J. Climate, 4, 517528, https://doi.org/10.1175/1520-0442(1991)004<0517:TPATPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., and Q. C. Zeng, 2002: A unified monsoon index. Geophys. Res. Lett., 29, 1274, https://doi.org/10.1029/2001GL013874.

  • Li, J. P., and J. X. L. Wang, 2003: A new North Atlantic Oscillation index and its variability. Adv. Atmos. Sci., 20, 661676, https://doi.org/10.1007/BF02915394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., and Q. Zeng, 2003: A new monsoon index and the geographical distribution of the global monsoons. Adv. Atmos. Sci., 20, 299302, https://doi.org/10.1007/s00376-003-0016-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., and C. Q. Ruan, 2018: The North Atlantic–Eurasian teleconnection in summer and its effects on Eurasian climates. Environ. Res. Lett., 13, 024007, https://doi.org/10.1088/1748-9326/aa9d33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., G. X. Wu, and D. X. Hu, 2011a: Ocean–Atmosphere Interaction over the Joining Area of Asia and Indian-Pacific Ocean and Its Impact on the Short-Term Climate Variation in China (in Chinese). Vol. 1, China Meteorological Press, 516 pp.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., G. X. Wu, and D. X. Hu, 2011b: Ocean–Atmosphere Interaction over the Joining Area of Asia and Indian-Pacific Ocean and Its Impact on the Short-Term Climate Variation in China (in Chinese). Vol. 2, China Meteorological Press, 565 pp.

    • Search Google Scholar
    • Export Citation
  • Li, J. P., C. Sun, and F. F. Jin, 2013: NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett., 40, 54975502, https://doi.org/10.1002/2013GL057877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J. P., F. Zheng, C. Sun, J. Feng, and J. Wang, 2019: Pathways of influence of the Northern Hemisphere mid–high latitudes on East Asian climate: A review. Adv. Atmos. Sci., 36, 902921, https://doi.org/10.1007/s00376-019-8236-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y. J., and J. P. Li, 2012: Propagation of planetary waves in the horizontal non-uniform basic flow (in Chinese). Chin. J. Geophys., 55, 361371.

    • Search Google Scholar
    • Export Citation
  • Li, Y. J., J. P. Li, F. F. Jin, and S. Zhao, 2015: Interhemispheric propagation of stationary Rossby waves in a horizontally nonuniform background flow. J. Atmos. Sci., 72, 32333256, https://doi.org/10.1175/JAS-D-14-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, T., J. P. Li, and F. Zheng, 2015: Influence of the boreal autumn southern annular mode on winter precipitation over land in the Northern Hemisphere. J. Climate, 28, 88258839, https://doi.org/10.1175/JCLI-D-14-00704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, T., J. P. Li, Q. Y. Wang, and S. Zhao, 2020: Influence of the autumn SST in the southern Pacific Ocean on winter precipitation in the North American monsoon region. Atmosphere, 11, 844, https://doi.org/10.3390/atmos11080844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, https://doi.org/10.1029/2005RG000172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Tebaldi, H. Teng, and T. Peterson, 2007: Current and future U.S. weather extremes and El Niño. Geophys. Res. Lett., 34, L20704, https://doi.org/10.1029/2007GL031027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. M. Caron, H. Annamalai, M. Jochum, A. Chakraborty, and R. Murtugudde, 2012: Monsoon regimes and processes in CCSM4. Part I: The Asian–Australian monsoon. J. Climate, 25, 25832608, https://doi.org/10.1175/JCLI-D-11-00184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2010: Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States. J. Climate, 23, 36393656, https://doi.org/10.1175/2010JCLI3553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and J. E. Schemm, 2008: Drought and persistent wet spells over the United States and Mexico. J. Climate, 21, 980994, https://doi.org/10.1175/2007JCLI1616.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, https://doi.org/10.1175/JCLI-D-12-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perrone, D., and S. Jasechko, 2017: Dry groundwater wells in the western United States. Environ. Res. Lett., 12, 104002, https://doi.org/10.1088/1748-9326/aa8ac0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piechota, T., J. Timilsena, G. Tootle, and H. Hidalgo, 2004: The western U.S. drought: How bad is it? Eos, Trans. Amer. Geophys. Union, 85, 301304, https://doi.org/10.1029/2004EO320001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, W. T., and X. D. Yan, 2020: The trend of heatwave events in the Northern Hemisphere. Phys. Chem. Earth, 116, 102855, https://doi.org/10.1016/j.pce.2020.102855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., M. Suarez, P. Pegion, R. Koster, and J. Bacmeister, 2004a: On the cause of the 1930s Dust Bowl. Science, 303, 18551859, https://doi.org/10.1126/science.1095048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, S., M. Suarez, P. Pegion, R. Koster, and J. Bacmeister, 2004b: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17, 485503, https://doi.org/10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., 2007: The turn of the century North American drought: Global context, dynamics, and past analogs. J. Climate, 20, 55275552, https://doi.org/10.1175/2007JCLI1529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40654088, https://doi.org/10.1175/JCLI3522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, J., and W. Qian, 2018: Asymmetry of two types of ENSO in the transition between the East Asian winter monsoon and the ensuing summer monsoon. Climate Dyn., 51, 39073926, https://doi.org/10.1007/s00382-018-4119-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straus, D. M., and J. Shukla, 2002: Does ENSO force the PNA? J. Climate, 15, 23402358, https://doi.org/10.1175/1520-0442(2002)015<2340:DEFTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., J. P. Li, R. Q. Ding, and Z. Jin, 2017: Cold season Africa–Asia multidecadal teleconnection pattern and its relation to the Atlantic multidecadal variability. Climate Dyn., 48, 39033918, https://doi.org/10.1007/s00382-016-3309-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, https://doi.org/10.1126/science.1109496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, G., and D. J. Shea, 2005: Relationships between precipitation and surface temperature. Geophys. Res. Lett., 32, L14703, https://doi.org/10.1029/2005GL022760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, G., G. W. Branstator, D. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. Oceans, 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., Y. Zhang, and L. Bajuk, 1996: Interpretation of interdecadal trends in Northern Hemisphere surface air temperature. J. Climate, 9, 249259, https://doi.org/10.1175/1520-0442(1996)009<0249:IOITIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and K. M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., C. P. Chang, and B. Wang, 2007: Impacts of El Niño and La Niña on the U.S. climate during northern summer. J. Climate, 20, 21652177, https://doi.org/10.1175/JCLI4118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z. W., L. Hai, J. Li, Z. Jiang, and T. Ma, 2012: Heat wave frequency variability over North America: Two distinct leading modes. J. Geophys. Res., 117, D02102, https://doi.org/10.1029/2011JD016908.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, B., and X. Zhang, 2015: A physical analysis of the severe 2013/2014 cold winter in North America. J. Geophys. Res. Atmos., 120, 149165, https://doi.org/10.1002/2015JD023116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, B., and H. Lin, 2016: Tropical atmospheric forcing of the wintertime North Atlantic Oscillation. J. Climate, 29, 17551772, https://doi.org/10.1175/JCLI-D-15-0583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., M. P. Hoerling, J. Perlwitz, D. Z. Sun, and M. Donald, 2011: Physics of U.S. surface temperature response to ENSO. J. Climate, 24, 48744887, https://doi.org/10.1175/2011JCLI3944.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Z., J. P. Li, J. Q. Xue, J. Feng, Q. Y. Wang, Y. D. Xu, and Y. H. Wang, 2018: Impact of the South China Sea summer monsoon on the Indian Ocean dipole. J. Climate, 31, 65576573, https://doi.org/10.1175/JCLI-D-17-0815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Z., J. P. Li, S. Zhao, F. Zheng, J. Feng, Y. Li, and Y. Xu, 2020: Indian Ocean tripole mode and its associated atmospheric and oceanic processes. Climate Dyn., 55, 13671383, https://doi.org/10.1007/s00382-020-05331-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Z., J. P. Li, F. Zheng, M. Yu, J. Feng, and C. Sun, 2021: Impact of the South China Sea summer monsoon on the Indian Ocean dipole in CMIP5 models. J. Climate, 34, 19631981, https://doi.org/10.1175/JCLI-D-20-0582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S., J. P. Li, and Y. J. Li, 2015: Dynamics of an interhemispheric teleconnection across the critical latitude through a southerly duct during boreal winter. J. Climate, 28, 74377456, https://doi.org/10.1175/JCLI-D-14-00425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S., J. P. Li, Y. J. Li, F. F. Jin, and J. Y. Zheng, 2019: Interhemispheric influence of Indo-Pacific convection oscillation on Southern Hemisphere rainfall through southward propagation of Rossby waves. Climate Dyn., 52, 32033221, https://doi.org/10.1007/s00382-018-4324-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Z. Q., S. P. Xie, and R. H. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc. Natl. Acad. Sci. USA, 118, e2022255118, https://doi.org/10.1073/pnas.2022255118.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 544 0 0
Full Text Views 597 290 19
PDF Downloads 437 135 15