Asymmetric Changes in Intraseasonal Oscillation Intensity over the Tropical Western North Pacific in El Niño and La Niña Developing Summers

Yuqi Wang aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
cCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Yuqi Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4712-2251
,
Renguang Wu bSchool of Earth Sciences, Zhejiang University, Hangzhou, China
aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
dSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Renguang Wu in
Current site
Google Scholar
PubMed
Close
, and
Qinlu Gu bSchool of Earth Sciences, Zhejiang University, Hangzhou, China

Search for other papers by Qinlu Gu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The intraseasonal oscillations (ISOs) over the tropical western North Pacific (WNP) modulate atmospheric convection and heating and affect weather and climate in remote regions through atmospheric teleconnection. The present study unravels the fact that the ISO intensity increase over the tropical WNP in El Niño developing summers is larger, with the center located eastward, compared with the decrease in La Niña developing summers. The asymmetric ISO intensity changes are attributed to the eastward shift of regions of anomalous low-level westerly winds, ascent, easterly shear of zonal winds, and large moisture in El Niño developing summers and westward shift of regions of opposite anomalies in La Niña developing summers, respectively. The asymmetric atmospheric mean anomalies, in turn, are due to the westward shift of anomalous cooling in La Niña developing summers compared to anomalous warming in El Niño developing summers. The 10–20- and 30–60-day ISOs show different patterns of intensity variations due to their different source regions and propagation paths. Atmospheric model simulations confirm the asymmetric response of boreal summer ISO intensity over the tropical WNP to El Niño and La Niña events and the role of asymmetric atmospheric background field changes. Sensitivity experiments illustrate that asymmetric changes in the ISO intensity and atmospheric background fields over the tropical WNP are due to their asymmetric response to opposite tropical central-eastern Pacific SST anomalies. The asymmetry in tropical central-eastern Pacific SST anomalies in El Niño and La Niña events has a small impact on asymmetric ISO intensity changes over the tropical WNP.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renguang Wu, renguang@zju.edu.cn

Abstract

The intraseasonal oscillations (ISOs) over the tropical western North Pacific (WNP) modulate atmospheric convection and heating and affect weather and climate in remote regions through atmospheric teleconnection. The present study unravels the fact that the ISO intensity increase over the tropical WNP in El Niño developing summers is larger, with the center located eastward, compared with the decrease in La Niña developing summers. The asymmetric ISO intensity changes are attributed to the eastward shift of regions of anomalous low-level westerly winds, ascent, easterly shear of zonal winds, and large moisture in El Niño developing summers and westward shift of regions of opposite anomalies in La Niña developing summers, respectively. The asymmetric atmospheric mean anomalies, in turn, are due to the westward shift of anomalous cooling in La Niña developing summers compared to anomalous warming in El Niño developing summers. The 10–20- and 30–60-day ISOs show different patterns of intensity variations due to their different source regions and propagation paths. Atmospheric model simulations confirm the asymmetric response of boreal summer ISO intensity over the tropical WNP to El Niño and La Niña events and the role of asymmetric atmospheric background field changes. Sensitivity experiments illustrate that asymmetric changes in the ISO intensity and atmospheric background fields over the tropical WNP are due to their asymmetric response to opposite tropical central-eastern Pacific SST anomalies. The asymmetry in tropical central-eastern Pacific SST anomalies in El Niño and La Niña events has a small impact on asymmetric ISO intensity changes over the tropical WNP.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renguang Wu, renguang@zju.edu.cn
Save
  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, https://doi.org/10.1007/s003820100161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, X., R. Wu, and M. Bi, 2018: Contributions of different time-scale variations to tropical cyclogenesis over the western North Pacific during boreal summer. J. Climate, 31, 31373153, https://doi.org/10.1175/JCLI-D-17-0519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, X., R. Wu, J. Xu, J. Feng, X.-P. Zhang, Y. F. Dai, and Y. Y. Liu, 2021: Contribution of the intensity of intraseasonal oscillation to the interannual variation of tropical cyclogenesis over the western North Pacific. Environ. Res. Commun., 3, 031002, https://doi.org/10.1088/2515-7620/abed93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and R. Huang, 2009: Interannual variations in mixed Rossby–gravity waves and their impacts on tropical cyclogenesis over the western North Pacific. J. Climate, 22, 535549, https://doi.org/10.1175/2008JCLI2221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. P., Z. P. Wen, R. Wu, Z. S. Chen, and P. Zhao, 2015: Influences of northward propagating 25–90-day and quasi-biweekly oscillations on eastern China summer rainfall. Climate Dyn., 45, 105124, https://doi.org/10.1007/s00382-014-2334-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T. C., and J. M. Chen, 1993: The 10–20-day mode of the 1979 Indian monsoon: Its relation with the time variation of monsoon rainfall. Mon. Wea. Rev., 121, 24652482, https://doi.org/10.1175/1520-0493(1993)121<2465:TDMOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., J. Ling, and C. Li, 2016: Evolution of Madden–Julian Oscillation in two types of El Niño. J. Climate, 29, 19191934, https://doi.org/10.1175/JCLI-D-15-0486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340, https://doi.org/10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, https://doi.org/10.1126/science.238.4827.657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gushchina, D., and B. Dewitte, 2012: Intraseasonal tropical atmospheric variability associated with the two favors of El Niño. Mon. Wea. Rev., 140, 36693681, https://doi.org/10.1175/MWR-D-11-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, W., R. Wu, and Y. Liu, 2014: Relation of the South China Sea precipitation variability to tropical Indo-Pacific SST anomalies during spring-to-summer transition. J. Climate, 27, 54515467, https://doi.org/10.1175/JCLI-D-14-00089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., C. Chou, and R. Huang, 2011: Seasonal modulation of tropical intraseasonal oscillations on tropical cyclone geneses in the western North Pacific. J. Climate, 24, 63396352, https://doi.org/10.1175/2011JCLI4200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kajikawa, Y., and T. Yasunari, 2005: Interannual variability of the 10–25- and 30–60-day variation over the South China Sea during boreal summer. Geophys. Res. Lett., 32, L04710, https://doi.org/10.1029/2004GL021836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the present of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 29232942, https://doi.org/10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2009: Global perspective of the quasi-biweekly oscillation. J. Climate, 22, 13401359, https://doi.org/10.1175/2008JCLI2368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2010: Formation of tropical cyclones in the northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes. J. Meteor. Soc. Japan, 88, 475496, https://doi.org/10.2151/jmsj.2010-313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., H.-T. Wu, and S. Bony, 1997: The role of large-scale atmospheric circulation in the relationship between tropical convection and sea surface temperature. J. Climate, 10, 381392, https://doi.org/10.1175/1520-0442(1997)010<0381:TROLSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320, https://doi.org/10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., and B. Wang, 1994: The influence of sea surface temperature on the tropical intraseasonal oscillation: A numerical study. Mon. Wea. Rev., 122, 23492362, https://doi.org/10.1175/1520-0493(1994)122<2349:TIOSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2013: An air–sea coupled skeleton model for the Madden–Julian oscillation. J. Atmos. Sci., 70, 31473156, https://doi.org/10.1175/JAS-D-12-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2014: A mechanism for explaining the maximum intraseasonal oscillation center over the western North Pacific. J. Climate, 27, 958968, https://doi.org/10.1175/JCLI-D-12-00797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., L. Zhou, J. Ling, X. Fu, and G. Huang, 2016a: Relationship between SST anomalies and the intensity of intraseasonal variability. Theor. Appl. Climatol., 124, 847854, https://doi.org/10.1007/s00704-015-1458-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., T. Li, H. Wang, L. Deng, and Y. Zhang, 2016b: Modulation of boreal summer intraseasonal oscillations over the western North Pacific by ENSO. J. Climate, 29, 71897201, https://doi.org/10.1175/JCLI-D-15-0831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, https://doi.org/10.1175/2008JCLI2542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., A. H. Sobel, and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth Syst., 2, 5, https://doi.org/10.3894/JAMES.2010.2.5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, J., and J. C. L. Chan, 2005: Intraseasonal variability of the South China Sea summer monsoon. J. Climate, 18, 23882402, https://doi.org/10.1175/JCLI3395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H., and B. Wang, 2003: Interannual variations of the boreal summer intraseasonal oscillation in the Asian–Pacific region. J. Climate, 16, 35723584, https://doi.org/10.1175/1520-0442(2003)016<3572:IVOTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and N. E. Graham, 1993: Convective cloud systems and warm-pool sea surface temperatures: Coupled interactions and self-regulation. J. Geophys. Res., 98, 12 88112 893, https://doi.org/10.1029/93JD00872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, https://doi.org/10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air–sea interaction in maintaining Madden–Julian oscillation. J. Climate, 11, 21162135, https://doi.org/10.1175/1520-0442-11.8.2116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on the Asian–Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. H., T. Li, and M. C. Chen, 2019: Mechanism for asymmetric atmospheric responses in the western North Pacific to El Niño and La Niña. Climate Dyn., 53, 39573969, https://doi.org/10.1007/s00382-019-04767-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and R. Wu, 2020: Patterns and factors of interannual variations of boreal summer intraseasonal oscillation intensity over tropical western North Pacific. Climate Dyn., 54, 20852099, https://doi.org/10.1007/s00382-019-05100-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. J. Zhou, 2010: Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J. Climate, 23, 48074822, https://doi.org/10.1175/2010JCLI3222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., 2018: Feedback of 10–20-day intraseasonal oscillations on seasonal mean SST in the tropical western North Pacific during boreal spring through fall. Climate Dyn., 51, 41694184, https://doi.org/10.1007/s00382-016-3362-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2001: Multi-stage onset of the summer monsoon over the western North Pacific. Climate Dyn., 17, 277289, https://doi.org/10.1007/s003820000118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and X. Cao, 2017: Relationship of boreal summer 10–20-day and 30–60-day intraseasonal oscillation intensity over the tropical western North Pacific to tropical Indo-Pacific SST. Climate Dyn., 48, 35293546, https://doi.org/10.1007/s00382-016-3282-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., and L. Song, 2018: Spatiotemporal change of intraseasonal oscillation intensity over the tropical Indo-Pacific Ocean associated with El Niño and La Niña events. Climate Dyn., 50, 12211242, https://doi.org/10.1007/s00382-017-3675-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., Z. Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., G. Huang, Z. Du, and K. Hu, 2014: Cross-season relation of the South China Sea precipitation variability between winter and summer. Climate Dyn., 43, 193207, https://doi.org/10.1007/s00382-013-1820-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., B. Wang, and B. Wang, 2008: Anticorrelated intensity change of the quasi-biweekly and 30–50-day oscillations over the South China Sea. Geophys. Res. Lett., 35, L16702, https://doi.org/10.1029/2008GL034449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., R. Wu, and C. Wang, 2020: Individual and combined impacts of tropical Indo-Pacific SST anomalies on interannual variation of the Indochina Peninsular precipitation. J. Climate, 33, 10691088, https://doi.org/10.1175/JCLI-D-19-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1993: Large-scale variability of atmospheric deep convection in relation to sea surface temperature in the tropics. J. Climate, 6, 18981913, https://doi.org/10.1175/1520-0442(1993)006<1898:LSVOAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C. W., T. Nakazawa, J. P. Li, and L. X. Chen, 2003: The 30–60 day intraseasonal oscillation over the western North Pacific Ocean and its impacts on summer flooding in China during 1998. Geophys. Res. Lett., 30, 1952, https://doi.org/10.1029/2003GL017817.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 409 0 0
Full Text Views 376 183 2
PDF Downloads 345 124 9