Central Asian Precipitation Extremes Affected by an Intraseasonal Planetary Wave Pattern

Peiqiang Xu aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Peiqiang Xu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3557-1853
,
Lin Wang aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Lin Wang in
Current site
Google Scholar
PubMed
Close
, and
Jie Ming bKey Laboratory of Mesoscale Severe Weather (Ministry of Education), School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Jie Ming in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The characteristics and mechanisms of extreme precipitation events over central Asia are investigated based on daily data and percentile criteria. The composited extreme precipitation events have a life cycle of about 10 days. The precipitation signal is weak but significant from eight to two days before the peak. Then it amplifies rapidly and reaches its peak in two days. The earliest precipitation signal appears over the northwest of central Asia and moves southeastward. It maximizes over northern central Asia and the windward side of the mountainous region, suggesting the role of orography in the precipitation extremes. Diagnosis suggests that the precipitation extremes are closely tied to a quasi-stationary planetary wave train emanating from the North Atlantic and the resultant disturbed Asian subtropical jet. The sharpened and accelerated Atlantic jet 10 days before the precipitation peak feeds a cyclonic anomaly at its exit region, which disperses energy downstream and forms a well-defined barotropic Rossby wave train in the Asian subtropical jet, resulting in an anomalous cyclone to the west of central Asia. On the one hand, the cyclone-induced water vapor transport into central Asia enhances the moisture content and increases the convective instability in the lower troposphere, providing a favorable thermodynamical condition for deep convections. On the other hand, the vorticity and temperature advection induced by this cyclone and the mechanical lifting on the windward side of mountains provide a favorable dynamical condition for ascending motion, which triggers the release of convective instability and the occurrence of precipitation extremes in central Asia.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lin Wang, wanglin@mail.iap.ac.cn

Abstract

The characteristics and mechanisms of extreme precipitation events over central Asia are investigated based on daily data and percentile criteria. The composited extreme precipitation events have a life cycle of about 10 days. The precipitation signal is weak but significant from eight to two days before the peak. Then it amplifies rapidly and reaches its peak in two days. The earliest precipitation signal appears over the northwest of central Asia and moves southeastward. It maximizes over northern central Asia and the windward side of the mountainous region, suggesting the role of orography in the precipitation extremes. Diagnosis suggests that the precipitation extremes are closely tied to a quasi-stationary planetary wave train emanating from the North Atlantic and the resultant disturbed Asian subtropical jet. The sharpened and accelerated Atlantic jet 10 days before the precipitation peak feeds a cyclonic anomaly at its exit region, which disperses energy downstream and forms a well-defined barotropic Rossby wave train in the Asian subtropical jet, resulting in an anomalous cyclone to the west of central Asia. On the one hand, the cyclone-induced water vapor transport into central Asia enhances the moisture content and increases the convective instability in the lower troposphere, providing a favorable thermodynamical condition for deep convections. On the other hand, the vorticity and temperature advection induced by this cyclone and the mechanical lifting on the windward side of mountains provide a favorable dynamical condition for ascending motion, which triggers the release of convective instability and the occurrence of precipitation extremes in central Asia.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lin Wang, wanglin@mail.iap.ac.cn
Save
  • Aizen, V. B., E. M. Aizen, D. R. Joswiak, K. Fujita, N. Takeuchi, and S. A. Nikitin, 2006: Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet). Ann. Glaciol., 43, 4960, https://doi.org/10.3189/172756406781812078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., N. E. Zimmermann, T. R. McVicar, N. Vergopolan, A. Berg, and E. F. Wood, 2018: Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F. H., and Coauthors, 2008: Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat. Sci. Rev., 27, 351364, https://doi.org/10.1016/j.quascirev.2007.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., S. Wang, Z. Hu, Q. Zhou, and Q. Hu, 2018: Spatiotemporal characteristics of seasonal precipitation and their relationships with ENSO in central Asia during 1901–2013. J. Geogr. Sci., 28, 13411368, https://doi.org/10.1007/s11442-018-1529-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., K. M. Hu, G. Srinivas, Y. Kosaka, L. Wang, and K. K. Rao, 2019: The Eurasian jet streams as conduits for East Asian monsoon variability. Curr. Climate Change Rep., 5, 233244, https://doi.org/10.1007/s40641-019-00134-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eekhout, J. P. C., J. E. Hunink, W. Terink, and J. de Vente, 2018: Why increased extreme precipitation under climate change negatively affects water security. Hydrol. Earth Syst. Sci., 22, 59355946, https://doi.org/10.5194/hess-22-5935-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gessner, U., V. Naeimi, I. Klein, C. Kuenzer, D. Klein, and S. Dech, 2013: The relationship between precipitation anomalies and satellite-derived vegetation activity in central Asia. Global Planet. Change, 110, 7487, https://doi.org/10.1016/j.gloplacha.2012.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmgren, M., and Coauthors, 2006: Extreme climatic events shape arid and semiarid ecosystems. Front. Ecol. Environ., 4, 8795, https://doi.org/10.1890/1540-9295(2006)004[0087:ECESAA]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. Elsevier Academic Press, 535 pp.

  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., Q. Hu, C. Zhang, X. Chen, and Q. Li, 2016: Evaluation of reanalysis, spatially interpolated and satellite remotely sensed precipitation data sets in central Asia. J. Geophys. Res., 121, 56485663, https://doi.org/10.1002/2016JD024781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., Q. Zhou, X. Chen, C. Qian, S. Wang, and J. Li, 2017: Variations and changes of annual precipitation in central Asia over the last century. Int. J. Climatol., 37, 157170, https://doi.org/10.1002/joc.4988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulme, M., 1996: Recent climatic change in the world’s drylands. Geophys. Res. Lett., 23, 6164, https://doi.org/10.1029/95GL03586.

  • Hyndman, R. J., and Y. N. Fan, 1996: Sample quantiles in statistical packages. Amer. Stat., 50, 361365, https://doi.org/10.2307/2684934.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2021: Climate Change 2021: The Physical Science Basis V. Masson-Delmotte et al., Eds., Cambridge Univiversity Press, in press.

  • Iwao, K., and M. Takahashi, 2008: A precipitation seesaw mode between northeast Asia and Siberia in summer caused by Rossby waves over the Eurasian continent. J. Climate, 21, 24012419, https://doi.org/10.1175/2007JCLI1949.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwasaki, H., and T. Nii, 2006: The break in the Mongolian rainy season and its relation to the stationary Rossby wave along the Asian jet. J. Climate, 19, 33943405, https://doi.org/10.1175/JCLI3806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J., and T. Zhou, 2021: Human-induced rainfall reduction in drought-prone northern central Asia. Geophys. Res. Lett., 48, e2020GL092156, https://doi.org/10.1029/2020GL092156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J., T. Zhou, and W. Zhang, 2019: Evaluation of satellite and reanalysis precipitable water vapor data sets against radiosonde observations in central Asia. Earth Space Sci., 6, 11291148, https://doi.org/10.1029/2019EA000654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J., T. Zhou, H. L. Wang, Y. Qian, D. Noone, and W. M. Man, 2020: Tracking moisture sources of precipitation over central Asia: A study based on the water-source-tagging method. J. Climate, 33, 10 33910 355, https://doi.org/10.1175/JCLI-D-20-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein Tank, A. M. G., and Coauthors, 2006: Changes in daily temperature and precipitation extremes in central and south Asia. J. Geophys. Res., 111, D16105, https://doi.org/10.1029/2005JD006316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, S., Z. Xie, C. Bueh, and Y. Gong, 2020: Fidelity of the APHRODITE dataset in representing extreme precipitation over central Asia. Adv. Atmos. Sci., 37, 14051416, https://doi.org/10.1007/s00376-020-0098-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. Chen, W. Li, H. Deng, and G. Fang, 2015: Potential impacts of climate change on vegetation dynamics in central Asia. J. Geophys. Res., 120, 12 34512 356, https://doi.org/10.1002/2015JD023618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R. Y., J. H. Oh, and B. J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54, 4455, https://doi.org/10.3402/tellusa.v54i1.12122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., 2007: How ENSO impacts precipitation in southwest central Asia. Geophys. Res. Lett., 34, L16706, https://doi.org/10.1029/2007GL030078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pueppke, S. G., S. T. Nurtazin, N. A. Graham, and J. Qi, 2018: Central Asia’s Ili river ecosystem as a wicked problem: Unraveling complex interrelationships at the interface of water, energy, and food. Water, 10, 541, https://doi.org/10.3390/w10050541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Safriel, U., and Coauthors, 2005: Dryland systems. R. Hassan, R. Scholes, and N. Ash, Eds., Ecosystems and Human Well-Being: Current State and Trends, Island Press, 623662.

    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Luthi, P. L. Vidale, and C. Schar, 2008: The precipitation climate of central Asia—Intercomparison of observational and numerical data sources in a remote semiarid region. Int. J. Climatol., 28, 295314, https://doi.org/10.1002/joc.1532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schierhorn, F., M. Hofmann, I. Adrian, I. Bobojonov, and D. Muller, 2020: Spatially varying impacts of climate change on wheat and barley yields in Kazakhstan. J. Arid Environ., 178, 104164, https://doi.org/10.1016/j.jaridenv.2020.104164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2014: Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Climate Change, 4, 704709, https://doi.org/10.1038/nclimate2271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave-propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392, https://doi.org/10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varis, O., 2014: Curb vast water use in central Asia. Nature, 514, 2729, https://doi.org/10.1038/514027a.

  • Wang, H., and Coauthors, 2020: Influence of sea-ice anomalies on Antarctic precipitation using source attribution in the Community Earth System Model. Cryosphere, 14, 429444, https://doi.org/10.5194/tc-14-429-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., P. Xu, W. Chen, and Y. Liu, 2017: Interdecadal variations of the Silk Road pattern. J. Climate, 30, 99159932, https://doi.org/10.1175/JCLI-D-17-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. Zhang, M. Wen, and S. Yang, 2017: Relationship between the Asian westerly jet stream and summer rainfall over central Asia and north China: Roles of the Indian monsoon and the South Asian high. J. Climate, 30, 537552, https://doi.org/10.1175/JCLI-D-15-0814.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, T., W. Huang, S. Chang, F. Zheng, J. Chen, J. Chen, and F. Chen, 2021: Moisture sources of extreme precipitation events in arid Central Asia and their relationship with atmospheric circulation. Int. J. Climatol., 41 (Suppl. 1), E271E282, https://doi.org/10.1002/joc.6683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, W. Chen, J. Feng, and Y. Liu, 2019a: Structural changes in the Pacific–Japan pattern in the late 1990s. J. Climate, 32, 607621, https://doi.org/10.1175/JCLI-D-18-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, and W. Chen, 2019b: The British-Baikal Corridor: A teleconnection pattern along the summertime polar front jet over Eurasia. J. Climate, 32, 877896, https://doi.org/10.1175/JCLI-D-18-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, W. Chen, G. Chen, and I.-S. Kang, 2020: Intraseasonal variations of the British-Baikal Corridor pattern. J. Climate, 33, 21832200, https://doi.org/10.1175/JCLI-D-19-0458.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, P., and Coauthors, 2021: Amplified waveguide teleconnections along the polar front jet favor summer temperature extremes over northern Eurasia. Geophys. Res. Lett., 48, e2021GL093735, https://doi.org/10.1029/2021GL093735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, D., and Coauthors, 2019: Solar activity and the westerlies dominate decadal hydroclimatic changes over arid central Asia. Global Planet. Change, 173, 5360, https://doi.org/10.1016/j.gloplacha.2018.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., 2003: Climate change of extreme precipitation in Xinjiang (in Chinese with English abstract). Acta Geogr. Sin., 58, 577583, https://doi.org/10.11821/xb200304012.

    • Search Google Scholar
    • Export Citation
  • Yao, J., and Coauthors, 2021: Intensification of extreme precipitation in arid Central Asia. J. Hydrol., 598, 125760, https://doi.org/10.1016/j.jhydrol.2020.125760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, https://doi.org/10.1175/BAMS-D-11-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., Y. Chen, Y. Shen, and Y. Li, 2017: Changes of precipitation extremes in arid central Asia. Quat. Int., 436, 1627, https://doi.org/10.1016/j.quaint.2016.12.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., M. Wang, A. Huang, H. Li, W. Huo, and Q. Yang, 2014a: Relationships between the West Asian subtropical westerly jet and summer precipitation in northern Xinjiang. Theor. Appl. Climatol., 116, 403411, https://doi.org/10.1007/s00704-013-0948-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., A. Huang, Y. Zhou, D. Huang, Q. Yang, Y. Ma, M. Li, and G. Wei, 2014b: Impact of the middle and upper tropospheric cooling over central Asia on the summer rainfall in the Tarim Basin, China. J. Climate, 27, 47214732, https://doi.org/10.1175/JCLI-D-13-00456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., X. Yu, J. Yao, and X. Dong, 2018: Evaluation of the subtropical westerly jet and its effects on the projected summer rainfall over central Asia using multi-CMIP5 models. Int. J. Climatol., 38, e1176e1189, https://doi.org/10.1002/joc.5443.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 525 0 0
Full Text Views 941 610 16
PDF Downloads 692 316 20