Interbasin Interactions between the Pacific and Atlantic Oceans Depending on the Phase of Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation

Jin-Sil Hong aDepartment of Marine Sciences and Convergence Technology, Hanyang University, Ansan, South Korea

Search for other papers by Jin-Sil Hong in
Current site
Google Scholar
PubMed
Close
,
Sang-Wook Yeh aDepartment of Marine Sciences and Convergence Technology, Hanyang University, Ansan, South Korea

Search for other papers by Sang-Wook Yeh in
Current site
Google Scholar
PubMed
Close
, and
Young-Min Yang bKey Laboratory of Meteorological Disaster, Ministry of Education/International Joint Research Laboratory on Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Jiangsu, China

Search for other papers by Young-Min Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The authors investigated the interbasin interactions between the Pacific and Atlantic Oceans depending on the phase relationship of Pacific decadal oscillation (PDO)/Atlantic multidecadal oscillation (AMO) based on observations and idealized model experiments. When the AMO and the PDO are in phase (i.e., +PDO/+AMO or −PDO/−AMO), the Pacific Ocean regulates the SST anomalies in the equatorial Atlantic Ocean with altering of the Walker circulation. During this period, there is a negative SST–precipitation relationship in the equatorial Atlantic Ocean where the atmosphere forces the ocean. In contrast, when they are out of phase (i.e., either +PDO/−AMO or −PDO/+AMO), the Atlantic Ocean influences the equatorial Pacific Ocean by modifying the Walker circulation, resulting in a westward shift of a center of convective forcing in the equatorial Pacific Ocean compared to that during an in-phase relationship of PDO/AMO. During this period, a positive SST–precipitation relationship is dominant in the equatorial Atlantic Ocean where the ocean forces the atmosphere. To verify this result, we conducted pacemaker experiments using the Nanjing University of Information Science and Technology Earth System Model version 3 (NESM3). Model results supported our findings obtained from the observations. We infer that the characteristics of the Pacific–Atlantic interbasin interactions depend on whether the PDO and AMO phases are either in phase or out of phase.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Sang-Wook Yeh, swyeh@hanyang.ac.kr; Young-Min Yang, youngminyang2@gmail.com

Abstract

The authors investigated the interbasin interactions between the Pacific and Atlantic Oceans depending on the phase relationship of Pacific decadal oscillation (PDO)/Atlantic multidecadal oscillation (AMO) based on observations and idealized model experiments. When the AMO and the PDO are in phase (i.e., +PDO/+AMO or −PDO/−AMO), the Pacific Ocean regulates the SST anomalies in the equatorial Atlantic Ocean with altering of the Walker circulation. During this period, there is a negative SST–precipitation relationship in the equatorial Atlantic Ocean where the atmosphere forces the ocean. In contrast, when they are out of phase (i.e., either +PDO/−AMO or −PDO/+AMO), the Atlantic Ocean influences the equatorial Pacific Ocean by modifying the Walker circulation, resulting in a westward shift of a center of convective forcing in the equatorial Pacific Ocean compared to that during an in-phase relationship of PDO/AMO. During this period, a positive SST–precipitation relationship is dominant in the equatorial Atlantic Ocean where the ocean forces the atmosphere. To verify this result, we conducted pacemaker experiments using the Nanjing University of Information Science and Technology Earth System Model version 3 (NESM3). Model results supported our findings obtained from the observations. We infer that the characteristics of the Pacific–Atlantic interbasin interactions depend on whether the PDO and AMO phases are either in phase or out of phase.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Sang-Wook Yeh, swyeh@hanyang.ac.kr; Young-Min Yang, youngminyang2@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 780 KB)
Save
  • An, X., B. Wu, T. Zhou, and B. Liu, 2021: Atlantic multidecadal oscillation drives interdecadal Pacific variability via tropical atmospheric bridge. J. Climate, 34, 55435553, https://doi.org/10.1175/JCLI-D-20-0983.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreoli, R. V., and M. T. Kayano, 2005: ENSO‐related rainfall anomalies in South America and associated circulation features during warm and cold Pacific decadal oscillation regimes. Int. J. Climatol., 25, 20172030, https://doi.org/10.1002/joc.1222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Cao, J., and Coauthors, 2018: The NUIST Earth System Model (NESM) version 3: Description and preliminary evaluation. Geosci. Model Dev., 11, 29752993, https://doi.org/10.5194/gmd-11-2975-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., Y. Kushnir, E. Hawkins, A. Pirani, F. Kucharski, I.-S. Kang, and N. Caltabiano, 2018: Decadal climate variability and predictability: Challenges and opportunities. Bull. Amer. Meteor. Soc., 99, 479490, https://doi.org/10.1175/BAMS-D-16-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C., and W. Zhou, 2005: PDO, ENSO and the early summer monsoon rainfall over south China. Geophys. Res. Lett., 32, L08810, https://doi.org/10.1029/2004GL022015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, P. A. Arkin, and T. M. Smith, 2004: Verifying the reanalysis and climate models outputs using a 56-year data set of reconstructed global precipitation. 14th Conf. on Applied Climatology, Seattle, WA, Amer. Meteor. Soc., J6.1, https://ams.confex.com/ams/84Annual/techprogram/paper_70083.htm.

    • Search Google Scholar
    • Export Citation
  • Chen, W., J. Feng, and R. Wu, 2013: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622635, https://doi.org/10.1175/JCLI-D-12-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiessi, C. M., S. Mulitza, J. Pätzold, G. Wefer, and J. A. Marengo, 2009: Possible impact of the Atlantic multidecadal oscillation on the South American summer monsoon. Geophys. Res. Lett., 36, L21707, https://doi.org/10.1029/2009GL039914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., T. Mochizuki, A. Timmermann, M. Kimoto, and M. Watanabe, 2016: Potential tropical Atlantic impacts on Pacific decadal climate trends. Geophys. Res. Lett., 43, 71437151, https://doi.org/10.1002/2016GL069544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • d’Orgeville, M., and W. R. Peltier, 2007: On the Pacific decadal oscillation and the Atlantic multidecadal oscillation: Might they be related? Geophys. Res. Lett., 34, L23705, https://doi.org/10.1029/2007GL031584.

    • Search Google Scholar
    • Export Citation
  • Elsbury, D., Y. Peings, D. Saint-Martin, H. Douville, and G. Magnusdottir, 2019: The atmospheric response to positive IPV, positive AMV, and their combination in boreal winter. J. Climate, 32, 41934213, https://doi.org/10.1175/JCLI-D-18-0422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas‐Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C., J. Renwick, M. Salinger, and A. Mullan, 2002: Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29, 1643, https://doi.org/10.1029/2001GL014201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, X., W. Zhang, F.-F. Jin, M. F. Stuecker, and A. F. Levine, 2020: Modulation of the relationship between ENSO and its combination mode by the Atlantic multidecadal oscillation. J. Climate, 33, 46794695, https://doi.org/10.1175/JCLI-D-19-0740.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, Z., C. Sun, J. Li, J. Feng, F. Xie, R. Ding, Y. Yang, and J. Xue, 2020: An inter-basin teleconnection from the North Atlantic to the subarctic North Pacific at multidecadal time scales. Climate Dyn., 54, 807822, https://doi.org/10.1007/s00382-019-05031-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hare, S. R., and N. J. Mantua, 2001: An historical narrative on the Pacific Decadal Oscillation, interdecadal climate variability and ecosystem impacts. Tech. Rep., 19 pp., https://doi.org/10.6069/6bz7mjcl.

    • Search Google Scholar
    • Export Citation
  • Hessl, A. E., D. McKenzie, and R. Schellhaas, 2004: Drought and Pacific decadal oscillation linked to fire occurrence in the inland Pacific Northwest. Ecol. Appl., 14, 425442, https://doi.org/10.1890/03-5019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, D., A. Dai, B. Yang, P. Yan, J. Zhu, and Y. Zhang, 2019: Contributions of different combinations of the IPO and AMO to recent changes in winter East Asian jets. J. Climate, 32, 16071626, https://doi.org/10.1175/JCLI-D-18-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X., J. Ge, and S. Wang, 2016: Diverse impacts of ENSO on wintertime rainfall over the Maritime Continent. Int. J. Climatol., 36, 33843397, https://doi.org/10.1002/joc.4562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, Z. F., Y. Chikamoto, S.-Y. S. Wang, M. J. McPhaden, and T. Mochizuki, 2020: Pacific decadal oscillation remotely forced by the equatorial Pacific and the Atlantic Oceans. Climate Dyn., 55, 789811, https://doi.org/10.1007/s00382-020-05295-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kayano, M. T., and R. V. Andreoli, 2007: Relations of South American summer rainfall interannual variations with the Pacific decadal oscillation. Int. J. Climatol., 27, 531540, https://doi.org/10.1002/joc.1417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kayano, M. T., and V. B. Capistrano, 2014: How the Atlantic Multidecadal Oscillation (AMO) modifies the ENSO influence on the South American rainfall. Int. J. Climatol., 34, 162178, https://doi.org/10.1002/joc.3674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kayano, M. T., R. V. Andreoli, and R. A. F. de Souza, 2019: El Niño–Southern Oscillation related teleconnections over South America under distinct Atlantic Multidecadal Oscillation and Pacific Interdecadal Oscillation backgrounds: La Niña. Int. J. Climatol., 39, 13591372, https://doi.org/10.1002/joc.5886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kayano, M. T., R. V. Andreoli, and R. A. F. de Souza, 2020: Pacific and Atlantic multidecadal variability relations to the El Niño events and their effects on the South American rainfall. Int. J. Climatol., 40, 21832200, https://doi.org/10.1002/joc.6326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, https://doi.org/10.1126/science.288.5473.1984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., S.-K. Lee, H. Lopez, and M. Goes, 2020: Pacific mean-state control of Atlantic multidecadal oscillation–El Niño relationship. J. Climate, 33, 42734291, https://doi.org/10.1175/JCLI-D-19-0398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., S.-W. Yeh, and E.-C. Chang, 2014: Combined effect of El Niño-Southern Oscillation and Pacific decadal oscillation on the East Asian winter monsoon. Climate Dyn., 42, 957971, https://doi.org/10.1007/s00382-013-1730-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., S.-I. An, S.-Y. Jun, H.-J. Park, and S.-W. Yeh, 2017: ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacific anticyclone. Climate Dyn., 49, 11571179, https://doi.org/10.1007/s00382-016-3371-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, https://doi.org/10.1029/2006GL026242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., and V. Krishnamurthy, 2014: Influence of PDO on South Asian summer monsoon and monsoon–ENSO relation. Climate Dyn., 42, 23972410, https://doi.org/10.1007/s00382-013-1856-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., and M. Sugi, 2003: Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Climate Dyn., 21, 233242, https://doi.org/10.1007/s00382-003-0330-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., L. Zhang, and W. Wang, 2013: Sea surface temperature–precipitation relationship in different reanalyses. Mon. Wea. Rev., 141, 11181123, https://doi.org/10.1175/MWR-D-12-00214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., B. Jha, and H. Wang, 2014: Attribution of SST variability in global oceans and the role of ENSO. Climate Dyn., 43, 209220, https://doi.org/10.1007/s00382-013-1865-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, E.-J., S.-W. Yeh, J.-G. Jhun, and B.-K. Moon, 2006: Seasonal change in anomalous WNPSH associated with the strong East Asian summer monsoon. Geophys. Res. Lett., 33, L21702, https://doi.org/10.1029/2006GL027474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F., M. J. McPhaden, and D. M. Frierson, 2017: The impact of the AMO on multidecadal ENSO variability. Geophys. Res. Lett., 44, 38773886, https://doi.org/10.1002/2017GL072524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, A. K., H. Paek, and J.-Y. Yu, 2016a: The changing influences of the AMO and PDO on the decadal variation of the Santa Ana winds. Environ. Res. Lett., 11, 064019, https://doi.org/10.1088/1748-9326/11/6/064019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., S.-P. Xie, S. T. Gille, and C. Yoo, 2016b: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., B. Wang, M. A. Cane, S.-Y. Yim, and J.-Y. Lee, 2013: Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature, 493, 656659, https://doi.org/10.1038/nature11784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, https://doi.org/10.1023/A:1015820616384.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691080, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, E. R., and C. D. Thorncroft, 2014: The impact of the AMO on the West African monsoon annual cycle. Quart. J. Roy. Meteor. Soc., 140, 3146, https://doi.org/10.1002/qj.2107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F.-F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, https://doi.org/10.1038/nclimate2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., M. F. Stuecker, J. B. Kajtar, M. H. England, and M. Collins, 2018: Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nat. Climate Change, 8, 493498, https://doi.org/10.1038/s41558-018-0163-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2021: Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes. Nat. Geosci., 14, 3642. https://doi.org/10.1038/s41561-020-00669-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, https://doi.org/10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, M., A. Dai, and W. Hua, 2020: Aerosol-forced multidecadal variations across all ocean basins in models and observations since 1920. Sci. Adv., 6, eabb0425, https://doi.org/10.1126/sciadv.abb0425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., R. Msadek, F. Castruccio, S. Yeager, T. Delworth, and G. Danabasoglu, 2017: Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Climate, 30, 27852810, https://doi.org/10.1175/JCLI-D-16-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salinger, M., J. Renwick, and A. Mullan, 2001: Interdecadal Pacific oscillation and South Pacific climate. Int. J. Climatol., 21, 17051721, https://doi.org/10.1002/joc.691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Si, D., and Y. Ding, 2016: Oceanic forcings of the interdecadal variability in East Asian summer rainfall. J. Climate, 29, 76337649, https://doi.org/10.1175/JCLI-D-15-0792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., F. Kucharski, J. Li, F.-F. Jin, I.-S. Kang, and R. Ding, 2017: Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun., 8, 15998, https://doi.org/10.1038/ncomms15998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., Y. Liu, Z. Gong, F. Kucharski, J. Li, Q. Wang, and X. Li, 2020: The footprint of Atlantic multidecadal oscillation on the intensity of tropical cyclones over the western North Pacific. Front. Earth Sci., 8, 604807, https://doi.org/10.3389/feart.2020.604807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, https://doi.org/10.1126/science.1109496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., R. R. Rodrigues, G. A. Meehl, S. McGregor, and M. H. England, 2016: How sensitive are the Pacific–tropical North Atlantic teleconnections to the position and intensity of El Niño-related warming? Climate Dyn., 46, 18411860, https://doi.org/10.1007/s00382-015-2679-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., A. Kumar, W. Wang, and Y. Xue, 2012: Seasonality of the Pacific decadal oscillation. J. Climate, 25, 2538, https://doi.org/10.1175/2011JCLI4092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, and R. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett., 35, L20702, https://doi.org/10.1029/2008GL035287

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-R., Y.-F. Lin, and B. Qiu, 2019: Impact of the Atlantic multidecadal oscillation on the Pacific North Equatorial Current bifurcation. Sci. Rep., 9, 2162, https://doi.org/10.1038/s41598-019-38479-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and K. Pegion, 2008: Local rainfall‐SST relationship on subseasonal time scales in satellite observations and CFS. Geophys. Res. Lett., 35, L22706, https://doi.org/10.1029/2008GL035883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, S., Z. Liu, R. Zhang, and T. L. Delworth, 2011: On the observed relationship between the Pacific Decadal Oscillation and the Atlantic Multi-decadal Oscillation. J. Oceanogr., 67, 2735, https://doi.org/10.1007/s10872-011-0003-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., and Coauthors, 2021: Greenhouse warming intensifies north tropical Atlantic climate variability. Sci. Adv., 7, eabg9690, https://doi.org/10.1126/sciadv.abg9690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., G. Zeng, C. Li, and X. Yang, 2020: Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period. Climate Dyn., 54, 30033020, https://doi.org/10.1007/s00382-020-05155-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, https://doi.org/10.1029/2007GL031601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., X. Sun, and X.-Q. Yang, 2018: Understanding the interdecadal variability of East Asian summer monsoon precipitation: Joint influence of three oceanic signals. J. Climate, 31, 54855506, https://doi.org/10.1175/JCLI-D-17-0657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., T. Wang, and J. Ma, 2016: Influence of internal decadal variability on the summer rainfall in eastern China as simulated by CCSM4. Adv. Atmos. Sci., 33, 706714, https://doi.org/10.1007/s00376-016-5269-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 821 0 0
Full Text Views 2101 1235 309
PDF Downloads 1520 603 42