An Intraseasonal Mode Linking Wintertime Surface Air Temperature over Arctic and Eurasian Continent

Junyi Xiu aDepartment of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, China
bInstitute of Atmospheric Sciences, Fudan University, Shanghai, China
cJoint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, California

Search for other papers by Junyi Xiu in
Current site
Google Scholar
PubMed
Close
,
Xianan Jiang cJoint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, California
dJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Xianan Jiang in
Current site
Google Scholar
PubMed
Close
,
Renhe Zhang aDepartment of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, China

Search for other papers by Renhe Zhang in
Current site
Google Scholar
PubMed
Close
,
Weina Guan cJoint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, California
eCMA–NJU Joint Laboratory for Climate Prediction Studies, Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Weina Guan in
Current site
Google Scholar
PubMed
Close
, and
Gang Chen fDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Gang Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Key processes associated with the leading intraseasonal variability mode of wintertime surface air temperature (SAT) over Eurasia and the Arctic region are investigated in this study. Characterized by a dipole distribution in SAT anomalies centered over north Eurasia and the Arctic, respectively, and coherent temperature anomalies vertically extending from the surface to 300 hPa, this leading intraseasonal SAT mode and associated circulation have pronounced influences on global surface temperature anomalies including the East Asian winter monsoon region. By taking advantage of realistic simulations of the intraseasonal SAT mode in a global climate model, it is illustrated that temperature anomalies in the troposphere associated with the leading SAT mode are mainly due to dynamic processes, especially via the horizontal advection of winter mean temperature by intraseasonal circulation. While the cloud–radiative feedback is not critical in sustaining the temperature variability in the troposphere, it is found to play a crucial role in coupling temperature anomalies at the surface and in the free atmosphere through anomalous surface downward longwave radiation. The variability in clouds associated with the intraseasonal SAT mode is closely linked to moisture anomalies generated by similar advective processes as for temperature anomalies. Model experiments suggest that this leading intraseasonal SAT mode can be sustained by internal atmospheric processes in the troposphere over the mid- to high latitudes by excluding forcings from Arctic sea ice variability, tropical convective variability, and the stratospheric processes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xianan Jiang, xianan@ucla.edu

Abstract

Key processes associated with the leading intraseasonal variability mode of wintertime surface air temperature (SAT) over Eurasia and the Arctic region are investigated in this study. Characterized by a dipole distribution in SAT anomalies centered over north Eurasia and the Arctic, respectively, and coherent temperature anomalies vertically extending from the surface to 300 hPa, this leading intraseasonal SAT mode and associated circulation have pronounced influences on global surface temperature anomalies including the East Asian winter monsoon region. By taking advantage of realistic simulations of the intraseasonal SAT mode in a global climate model, it is illustrated that temperature anomalies in the troposphere associated with the leading SAT mode are mainly due to dynamic processes, especially via the horizontal advection of winter mean temperature by intraseasonal circulation. While the cloud–radiative feedback is not critical in sustaining the temperature variability in the troposphere, it is found to play a crucial role in coupling temperature anomalies at the surface and in the free atmosphere through anomalous surface downward longwave radiation. The variability in clouds associated with the intraseasonal SAT mode is closely linked to moisture anomalies generated by similar advective processes as for temperature anomalies. Model experiments suggest that this leading intraseasonal SAT mode can be sustained by internal atmospheric processes in the troposphere over the mid- to high latitudes by excluding forcings from Arctic sea ice variability, tropical convective variability, and the stratospheric processes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xianan Jiang, xianan@ucla.edu
Save
  • Abdillah, M. R., Y. Kanno, and T. Iwasaki, 2018: Tropical–extratropical interactions associated with East Asian cold air outbreaks. Part II: Intraseasonal variation. J. Climate, 31, 473490, https://doi.org/10.1175/JCLI-D-17-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baxter, S., S. Weaver, J. Gottschalck, and Y. Xue, 2014: Pentad evolution of wintertime impacts of the Madden–Julian oscillation over the contiguous United States. J. Climate, 27, 73567367, https://doi.org/10.1175/JCLI-D-14-00105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., and J. A. Screen, 2020: Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Sci. Adv., 6, eaay2880, https://doi.org/10.1126/sciadv.aay2880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackport, R., J. A. Screen, K. van der Wiel, and R. Bintanja, 2019: Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat. Climate Change, 9, 697704, https://doi.org/10.1038/s41558-019-0551-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature, 455, 523527, https://doi.org/10.1038/nature07286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, J. P., and S. B. Feldstein, 2019: What drives the North Atlantic Oscillation’s temperature anomaly pattern? Part I: The growth and decay of the surface air temperature anomalies. J. Atmos. Sci., 77, 185198, https://doi.org/10.1175/JAS-D-19-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, J., S. Yang, and T. Li, 2020: The influence of the Madden–Julian oscillation on high-latitude surface air temperature during boreal winter. Dyn. Atmos. Oceans, 90, 101141, https://doi.org/10.1016/j.dynatmoce.2020.101141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, J., A. Dai, and D. Chyi, 2020: Northern Hemisphere winter air temperature patterns and their associated atmospheric and ocean conditions. J. Climate, 33, 61656186, https://doi.org/10.1175/JCLI-D-19-0533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and Coauthors, 2017: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Climate Change, 7, 289295, https://doi.org/10.1038/nclimate3241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor. Climatol., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, X., W. Zhang, M. F. Stuecker, and F.-F. Jin, 2017: Strong sub-seasonal wintertime cooling over East Asia and Northern Europe associated with super El Niño events. Sci. Rep., 7, 3770, https://doi.org/10.1038/s41598-017-03977-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., S.-W. Wang, and J.-H. Zhu, 2001: East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 20732076, https://doi.org/10.1029/2000GL012311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, M. R., and J. C. Furtado, 2019: Evaluating the joint influence of the Madden–Julian oscillation and the stratospheric polar vortex on weather patterns in the Northern Hemisphere. J. Geophys. Res. Atmos., 124, 11 69311 709, https://doi.org/10.1029/2019JD030771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, W., X. Jiang, X. Ren, G. Chen, and Q. Ding, 2020a: Role of atmospheric variability in driving the “warm-Arctic, cold-continent” pattern over the North America sector and sea ice variability over the Chukchi–Bering Sea. Geophys. Res. Lett., 47, e2020GL088599, https://doi.org/10.1029/2020GL088599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, W., X. Jiang, X. Ren, G. Chen, P. Lin, and H. Lin, 2020b: The leading intraseasonal variability mode of wintertime surface air temperature over the North American sector. J. Climate, 33, 92879306, https://doi.org/10.1175/JCLI-D-20-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., H. Lin, and Z. Wu, 2011: Another look at influences of the Madden–Julian oscillation on the wintertime East Asian weather. J. Geophys. Res., 116, D03109, https://doi.org/10.1029/2010JD014787.

    • Search Google Scholar
    • Export Citation
  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea‐ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008GL037079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., and W. Tian, 2019: Eurasian cold air outbreaks under different Arctic stratospheric polar vortex strengths. J. Atmos. Sci., 76, 12451264, https://doi.org/10.1175/JAS-D-18-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, J., M. E. Hori, and K. Takaya, 2012: The role of Barents sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J. Climate, 25, 25612568, https://doi.org/10.1175/JCLI-D-11-00449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., C.-H. Ho, B.-M. Kim, and W.-T. Kwon, 2005: Influence of the Madden–Julian oscillation on wintertime surface air temperature and cold surges in East Asia. J. Geophys. Res., 110, D11104, https://doi.org/10.1029/2004JD005408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., E. Maloney, and H. Su, 2020: Large-scale controls of propagation of the Madden–Julian Oscillation. npj Climate Atmos. Sci., 3, 29, https://doi.org/10.1038/s41612-020-00134-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Z., S. B. Feldstein, and S. Lee, 2017: The relationship between the Madden–Julian oscillation and the North Atlantic Oscillation. Quart. J. Roy. Meteor. Soc., 143, 240250, https://doi.org/10.1002/qj.2917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, https://doi.org/10.1038/ncomms5646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-J., S.-W. Son, W. Moon, J.-S. Kug, and J. Hwang, 2021: Subseasonal relationship between Arctic and Eurasian surface air temperature. Sci. Rep., 11, 4081, https://doi.org/10.1038/s41598-021-83486-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., T. Breiteig, and A. A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 136, 886893, https://doi.org/10.1002/qj.620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kretschmer, M., D. Coumou, L. Agel, M. Barlow, E. Tziperman, and J. Cohen, 2018: More-persistent weak stratospheric polar vortex states linked to cold extremes. Bull. Amer. Meteor. Soc., 99, 4960, https://doi.org/10.1175/BAMS-D-16-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, A. L., K. Pegion, and E. A. Barnes, 2020: Introduction to special collection: “Bridging Weather and Climate: Subseasonal-to-Seasonal (S2S) Prediction.” J. Geophys. Res. Atmos., 125, e2019JD031833, https://doi.org/10.1029/2019JD031833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, N. Johnson, S. B. Feldstein, and D. Pollard, 2011: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367, https://doi.org/10.1175/2011JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and R. W. Higgins, 2008: Boreal winter links between the Madden–Julian oscillation and the Arctic Oscillation. J. Climate, 21, 30403050, https://doi.org/10.1175/2007JCLI1955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., J. Ling, and P.-C. Hsu, 2020: Madden–Julian oscillation: Its discovery, dynamics, and impact on East Asia. J. Meteor. Res., 34, 2042, https://doi.org/10.1007/s13351-020-9153-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., 2015: Subseasonal variability of North American wintertime surface air temperature. Climate Dyn., 45, 11371155, https://doi.org/10.1007/s00382-014-2363-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., 2018: Predicting the dominant patterns of subseasonal variability of wintertime surface air temperature in extratropical Northern Hemisphere. Geophys. Res. Lett., 45, 43814389, https://doi.org/10.1029/2018GL077509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., and G. Brunet, 2009: The influence of the Madden–Julian oscillation on Canadian wintertime surface air temperature. Mon. Wea. Rev., 137, 22502262, https://doi.org/10.1175/2009MWR2831.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380, https://doi.org/10.1175/2008JCLI2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Xiao, Y. Yao, A. Dai, I. Simmonds, and C. L. E. Franzke, 2016: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29, 39253947, https://doi.org/10.1175/JCLI-D-15-0611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, https://doi.org/10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., Y. Kosaka, M. Watanabe, H. Nakamura, and M. Kimoto, 2019: A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling. Nat. Climate Change, 9, 123129, https://doi.org/10.1038/s41558-018-0379-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res. Atmos., 120, 32093227, https://doi.org/10.1002/2014JD022848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, Y. Tomikawa, and J. Ukita, 2016: The stratospheric pathway for Arctic impacts on midlatitude climate. Geophys. Res. Lett., 43, 34943501, https://doi.org/10.1002/2016GL068330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, Engineering and Medicine, 2016: Next Generation Earth System Prediction: Strategies for Subseasonal to Seasonal Forecasts. The National Academies Press, 350 pp.

  • Nordeng, T. E., 1994: Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech. Memo. 206, 41 pp., https://www.ecmwf.int/node/11393.

  • Park, T.-W., C.-H. Ho, S. Yang, and J.-H. Jeong, 2010: Influences of Arctic Oscillation and Madden–Julian oscillation on cold surges and heavy snowfalls over Korea: A case study for the winter of 2009–2010. J. Geophys. Res., 115, D23122, https://doi.org/10.1029/2010JD014794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, T.-W., C.-H. Ho, and S. Yang, 2011: Relationship between the Arctic Oscillation and cold surges over East Asia. J. Climate, 24, 6883, https://doi.org/10.1175/2010JCLI3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, C., K. Fan, and H. Dai, 2019: Sub seasonal variations of weak stratospheric polar vortex in December and its impact on Eurasian air temperature. Atmos. Oceanic Sci. Lett., 12, 369375, https://doi.org/10.1080/16742834.2019.1640053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., M. B. Stoner, N. C. Johnson, M. L. L’Heureux, D. C. Collins, and S. B. Feldstein, 2013: The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Climate Dyn., 40, 17491766, https://doi.org/10.1007/s00382-012-1493-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck-Institute for Meteorology Rep. 218, 94 pp., http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/MPI-Report_218.pdf

  • Seo, K.-H., H.-J. Lee, and D. M. W. Frierson, 2016: Unraveling the teleconnection mechanisms that induce wintertime temperature anomalies over the Northern Hemisphere continents in response to the MJO. J. Atmos. Sci., 73, 35573571, https://doi.org/10.1175/JAS-D-16-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, L., and R. Wu, 2018: Comparison of intraseasonal East Asian winter cold temperature anomalies in positive and negative phases of the Arctic Oscillation. J. Geophys. Res. Atmos., 123, 85188537, https://doi.org/10.1029/2018JD028343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, L., and R. Wu, 2019a: Precursory signals of East Asian winter cold anomalies in stratospheric planetary wave pattern. Climate Dyn., 52, 59655983, https://doi.org/10.1007/s00382-018-4491-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, L., and R. Wu, 2019b: Impacts of MJO convection over the maritime continent on Eastern China cold temperatures. J. Climate, 32, 34293449, https://doi.org/10.1175/JCLI-D-18-0545.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, L., and R. Wu, 2019c: Combined effects of the MJO and the Arctic Oscillation on the intraseasonal Eastern China winter temperature variations. J. Climate, 32, 22952311, https://doi.org/10.1175/JCLI-D-18-0625.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, L., and R. Wu, 2020: Distinct Eurasian climate anomalies associated with strong and weak MJO events. Int. J. Climatol., 40, 66666674, https://doi.org/10.1002/joc.6630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorokina, S. A., C. Li, J. J. Wettstein, and N. G. Kvamstø, 2016: Observed atmospheric coupling between Barents Sea ice and the warm-Arctic cold-Siberian anomaly pattern. J. Climate, 29, 495511, https://doi.org/10.1175/JCLI-D-15-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Climate, 28, 78247845, https://doi.org/10.1175/JCLI-D-15-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sung, M.-K., S.-W. Son, C. Yoo, J. Hwang, and S.-I. An, 2021: Seesawing of winter temperature extremes between East Asia and North America. J. Climate, 34, 44234434, https://doi.org/10.1175/JCLI-D-20-0789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005: Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 62, 44234440, https://doi.org/10.1175/JAS3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vargas Zeppetello, L. R., A. Donohoe, and D. S. Battisti, 2019: Does surface temperature respond to or determine downwelling longwave radiation? Geophys. Res. Lett., 46, 27812789, https://doi.org/10.1029/2019GL082220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and N. A. Bond, 2004: The Madden–Julian oscillation (MJO) and northern high latitude wintertime surface air temperatures. Geophys. Res. Lett., 31, L04104, https://doi.org/10.1029/2003GL018645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and A. W. Robertson, 2018: The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Climate Atmos. Sci., 1, 3, https://doi.org/10.1038/s41612-018-0013-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) prediction project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woo, S.-H., B.-M. Kim, and J.-S. Kug, 2015: Temperature variation over East Asia during the life cycle of weak stratospheric polar vortex. J. Climate, 28, 58575872, https://doi.org/10.1175/JCLI-D-14-00790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., S.-J. Lin, M. Zhao, N. C. Johnson, X. Yang, and X. Jiang, 2019: Subseasonal week 3–5 surface air temperature prediction during boreal wintertime in a GFDL model. Geophys. Res. Lett., 46, 416425, https://doi.org/10.1029/2018GL081314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., Y. Q. Sun, J.-H. Chen, N. C. Johnson, and X. Jiang, 2020: Subseasonal prediction of land cold extremes in boreal wintertime. J. Geophys. Res. Atmos., 125, e2020JD032670, https://doi.org/10.1029/2020JD032670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., and T. Li, 2016: Intraseasonal variability of air temperature over the mid-high latitude Eurasia in boreal winter. Climate Dyn., 47, 21552175, https://doi.org/10.1007/s00382-015-2956-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S., Z. Zhu, J. Cui, and Y. Yang, 2019: Regulation of the intraseasonal oscillation over mid-to-high latitude Eurasia on winter surface air temperature over China. Dyn. Atmos. Oceans, 86, 6372, https://doi.org/10.1016/j.dynatmoce.2019.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, S., Q. Sun, Q. Huang, and P. Chu, 2016: The 10–30-day intraseasonal variation of the East Asian winter monsoon: The temperature mode. Dyn. Atmos. Oceans, 75, 91101, https://doi.org/10.1016/j.dynatmoce.2016.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, S., Q. Tong, T. Li, and K. Gong, 2020: The 10–30-day oscillation of winter rainfall in southern China and its relationship with circulation patterns in different latitudes. Int. J. Climatol., 40, 32683280, https://doi.org/10.1002/joc.6396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, Y., H. Lin, and Q. Wu, 2015: Subseasonal variability of precipitation in China during boreal winter. J. Climate, 28, 65486559, https://doi.org/10.1175/JCLI-D-15-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, K., and T. Jung, 2019: How strong is influence of the tropics and midlatitudes on the Arctic atmospheric circulation and climate change? Geophys. Res. Lett., 46, 49424952, https://doi.org/10.1029/2019GL082391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. B. Feldstein, 2012: Mechanisms of Arctic surface air temperature change in response to the Madden–Julian oscillation. J. Climate, 25, 57775790, https://doi.org/10.1175/JCLI-D-11-00566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P., Y. Wu, I. R. Simpson, K. L. Smith, X. Zhang, B. De, and P. Callaghan, 2018: A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Sci. Adv., 4, eaat6025, https://doi.org/10.1126/sciadv.aat6025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and A. Sumi, 2002: Moisture circulation over East Asia during El Niño episode in northern winter, spring and autumn. J. Meteor. Soc. Japan, 80, 213227, https://doi.org/10.2151/jmsj.80.213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ‘86/87 and ‘91/92 events. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., T. Li, M. Wen, and L. Liu, 2015: Role of intraseasonal oscillation in asymmetric impacts of El Niño and La Niña on the rainfall over southern China in boreal winter. Climate Dyn., 45, 559567, https://doi.org/10.1007/s00382-014-2207-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, C., E. Kar-Man Chang, H.-M. Kim, M. Zhang, and W. Wang, 2018: Impacts of the Madden–Julian oscillation on storm-track activity, surface air temperature, and precipitation over North America. J. Climate, 31, 61136134, https://doi.org/10.1175/JCLI-D-17-0534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, S., M. L’Heureux, S. Weaver, and A. Kumar, 2012: A composite study of the MJO influence on the surface air temperature and precipitation over the Continental United States. Climate Dyn., 38, 14591471, https://doi.org/10.1007/s00382-011-1001-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 511 0 0
Full Text Views 1295 695 196
PDF Downloads 846 206 12