• Adam, O., T. Bischoff, and T. Schneider, 2016: Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: Zonally averaged ITCZ position. J. Climate, 29, 72817293, https://doi.org/10.1175/JCLI-D-15-0710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, S. P., A. Hinton, and R. A. Weller, 1998: Moored observations of precipitation temperature. J. Atmos. Oceanic Technol., 15, 979986, https://doi.org/10.1175/1520-0426(1998)015<0979:MOOPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810, https://doi.org/10.1029/2006GL026672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2009: Structure of the Madden–Julian oscillation in the superparameterized CAM. J. Atmos. Sci., 66, 32773296, https://doi.org/10.1175/2009JAS3030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biasutti, M., and Coauthors, 2018: Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci., 11, 392400, https://doi.org/10.1038/s41561-018-0137-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, H. Morrison, V. E. Larson, C. Craig, and D. P. Schanen, 2013: Higher-order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. J. Climate, 26, 96559676, https://doi.org/10.1175/JCLI-D-13-00075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and R. L. Korty, 2016: Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall. Nat. Geosci., 9, 892897, https://doi.org/10.1038/ngeo2833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739, https://doi.org/10.1175/2011JCLI4175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., H. Moses, and P. J. Harney, 1949: Measurement of rain temperature. J. Meteor., 6, 5155, https://doi.org/10.1175/1520-0469(1949)006<0051:MORT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and T. Schneider, 2016: Narrowing of the ITCZ in a warming climate: Physical mechanisms. Geophys. Res. Lett., 43, 11 35011 357, https://doi.org/10.1002/2016GL070396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., A. G. Pendergrass, A. D. Rapp, and K. R. Wodzicki, 2018: Response of the intertropical convergence zone to climate change: Location, width, and strength. Curr. Climate Change Rep., 4, 355370, https://doi.org/10.1007/s40641-018-0110-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catry, B., J. F. Geleyn, M. Tudor, P. Bénard, and A. Trojáková, 2007: Flux-conservative thermodynamic equations in a mass-weighted framework. Tellus, 59A, 7179, https://doi.org/10.1111/j.1600-0870.2006.00212.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degrauwe, D., Y. Seity, F. Bouyssel, and P. Termonia, 2016: Generalization and application of the flux-conservative thermodynamic equations in the AROME model of the ALADIN system. Geosci. Model Dev., 9, 21292142, https://doi.org/10.5194/gmd-9-2129-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1985: Linear response of a stratified tropical atmosphere to convective forcing. J. Atmos. Sci., 42, 19441959, https://doi.org/10.1175/1520-0469(1985)042<1944:LROAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., D. A. Randall, and M. Khairoutdinov, 2007: Convective precipitation variability as a tool for general circulation model analysis. J. Climate, 20, 91112, https://doi.org/10.1175/JCLI3991.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, https://doi.org/10.1038/ngeo1987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and H. Morrison, 2015: Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. J. Climate, 28, 12681287, https://doi.org/10.1175/JCLI-D-14-00102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., and Coauthors, 2019: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. J. Adv. Model. Earth Syst., 11, 20892129, https://doi.org/10.1029/2018MS001603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gosnell, R., C. W. Fairall, and P. J. Webster, 1995: The sensible heat of rainfall in the tropical ocean. J. Geophys. Res., 100, 18437, https://doi.org/10.1029/95JC01833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the clouds-resolving convection parameterization (CRCP). J. Atmos. Sci., 58, 978997, https://doi.org/10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and P. K. Smolarkiewicz, 1999: CRCP: A cloud resolving convection parameterization for modeling the tropical convecting atmosphere. Physica D, 133, 171178, https://doi.org/10.1016/S0167-2789(99)00104-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, C., M. Bentsen, I. Bethke, M. Ilicak, J. Tjiputra, T. Toniazzo, J. Schwinger, and O. Helge Otterä, 2019: Description and evaluation of NorESM1-F: A fast version of the Norwegian Earth System Model (NorESM). Geosci. Model Dev., 12, 343362, https://doi.org/10.5194/gmd-12-343-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrop, B. E., J. Lu, and L. R. Leung, 2019: Sub-cloud moist entropy curvature as a predictor for changes in the seasonal cycle of tropical precipitation. Climate Dyn., 53, 34633479, https://doi.org/10.1007/s00382-019-04715-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., H. H. Hendon, and R. A. Houze, 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113121, https://doi.org/10.1175/1520-0469(1984)041<0113:SIOTMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and D. T. Bolvin, 2013a: GPCP version 2.2 SG combined precipitation data set documentation. NASA GSFC Doc., 46 pp., https://iridl.ldeo.columbia.edu/documentation/NASA/GPCP/V2p2/V2.2_doc.pdf.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and D. T. Bolvin, 2013b: Version 1.2 GPCP one-degree daily precipitation data set documentation. NASA, Goddard Space Flight Center, 27 pp., https://www1.ncdc.noaa.gov/pub/data/gpcp/daily-v1.2/documentation/1DD_v1.2_doc.pdf (for the actual data, see https://doi.org/10.5065/D6D50K46).

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Igel, M. R., and A. L. Igel, 2018: The energetics and magnitude of hydrometeor friction in clouds. J. Atmos. Sci., 75, 13431350, https://doi.org/10.1175/JAS-D-17-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, K., and L. E. Back, 2017: Gross moist stability analysis: Assessment of satellite-based products in the GMS plane. J. Atmos. Sci., 74, 18191837, https://doi.org/10.1175/JAS-D-16-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, https://doi.org/10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1974: Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev., 102, 509522, https://doi.org/10.1175/1520-0493(1974)102<0509:VVCSUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System model: Preliminary results. Geophys. Res. Lett., 28, 36173620, https://doi.org/10.1029/2001GL013552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., D. A. Randall, and C. DeMott, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci., 62, 21362154, https://doi.org/10.1175/JAS3453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinzer, G. D., and R. Gunn, 1951: The evaporation, temperature and thermal relaxation-time of freely falling waterdrops. J. Meteor., 8, 7183, https://doi.org/10.1175/1520-0469(1951)008<0071:TETATR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kooperman, G. J., M. S. Pritchard, M. A. Burt, M. D. Branson, and D. A. Randall, 2016: Robust effects of cloud superparameterization on simulated daily rainfall intensity statistics across multiple versions of the Community Earth System Model. J. Adv. Model. Earth Syst., 8, 140165, https://doi.org/10.1002/2015MS000574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laprise, R., and C. Girard, 1990: A spectral general circulation model using a piecewise-constant finite-element representation on a hybrid vertical coordinate system. J. Climate, 3, 3252, https://doi.org/10.1175/1520-0442(1990)003<0032:ASGCMU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., and D. L. Williamson, 2019: A total energy error analysis of dynamical cores and physics-dynamics coupling in the Community Atmosphere Model (CAM). J. Adv. Model. Earth Syst., 11, 13091328, https://doi.org/10.1029/2018MS001549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124, 20462070, https://doi.org/10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., and R. B. Rood, 1997: An explicit flux-form semi-Lagrangian shallow-water model on the sphere. Quart. J. Roy. Meteor. Soc., 123, 24772498, https://doi.org/10.1002/qj.49712354416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., P. L. Ma, H. Wang, S. Tilmes, B. Singh, R. C. Easter, S. J. Ghan, and P. J. Rasch, 2016: Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev., 9, 505522, https://doi.org/10.5194/gmd-9-505-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., D. Xue, L. R. Leung, F. Liu, F. Song, B. Harrop, and W. Zhou, 2021: The leading modes of Asian summer monsoon variability as pulses of atmospheric energy flow. Geophys. Res. Lett., 48, e2020GL091629, https://doi.org/10.1029/2020GL091629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, M., L. Haimberger, J. M. Edwards, and P. Hyder, 2017: Toward consistent diagnostics of the coupled atmosphere and ocean energy budgets. J. Climate, 30, 92259246, https://doi.org/10.1175/JCLI-D-17-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, https://doi.org/10.1002/joc.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR Tech. Note NCAR/TN-486+ STR, 274 pp., www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12, 829856, https://doi.org/10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and I. M. Held, 2002: Entropy budget of an atmosphere in radiative-convective equilibrium. Part II: Latent heat transport and moist processes. J. Atmos. Sci., 59, 140149, https://doi.org/10.1175/1520-0469(2002)059<0140:EBOAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and J. Dias, 2012: Satellite estimates of precipitation-induced dissipation in the atmosphere. Science, 335, 953956, https://doi.org/10.1126/science.1215869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., V. Balaji, and I. M. Held, 2000: Frictional dissipation in a precipitating atmosphere. J. Atmos. Sci., 57, 989994, https://doi.org/10.1175/1520-0469(2000)057<0989:FDIAPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and D. L. Hartmann, 2014: Two modes of change of the distribution of rain. J. Climate, 27, 83578371, https://doi.org/10.1175/JCLI-D-14-00182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564, https://doi.org/10.1175/BAMS-84-11-1547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., and Coauthors, 2019: An overview of the atmospheric component of the energy exascale Earth system model. J. Adv. Model. Earth Syst., 11, 23772411, https://doi.org/10.1029/2019MS001629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2013: Sources and sinks of entropy in the atmosphere. J. Adv. Model. Earth Syst., 5, 755763, https://doi.org/10.1002/jame.20050.

  • Romps, D. M., 2008: The dry-entropy budget of a moist atmosphere. J. Atmos. Sci., 65, 37793799, https://doi.org/10.1175/2008JAS2679.1.

  • Sabuwala, T., G. Gioia, and P. Chakraborty, 2015: Effect of rainpower on hurricane intensity. Geophys. Res. Lett., 42, 30243029, https://doi.org/10.1002/2015GL063785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze, and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 13411358, https://doi.org/10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seland, Ø., and Coauthors, 2020: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev., 13, 61656200, https://doi.org/10.5194/gmd-13-6165-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R., 2011: Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteor. Climatol., 50, 22672269, https://doi.org/10.1175/JAMC-D-11-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takacs, L. L., M. J. Suárez, and R. Todling, 2016: Maintaining atmospheric mass and water balance in reanalyses. Quart. J. Roy. Meteor. Soc., 142, 15651573, https://doi.org/10.1002/qj.2763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: Using atmospheric budgets as a constraint on surface fluxes. J. Climate, 10, 27962809, https://doi.org/10.1175/1520-0442(1997)010<2796:UABAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2018: Applications of an updated atmospheric energetics formulation. J. Climate, 31, 62636279, https://doi.org/10.1175/JCLI-D-17-0838.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and J. M. Caron, 2002: Accuracy of atmospheric energy budgets from analyses. J. Climate, 15, 33433360, https://doi.org/10.1175/1520-0442(2002)015<3343:AOAEBF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Beek, L. P., T. Eikelboom, M. T. van Vliet, and M. F. Bierkens, 2012: A physically based model of global freshwater surface temperature. Water Resour. Res., 48, W09530, https://doi.org/10.1029/2012WR011819.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., J. G. Olson, C. Hannay, T. Toniazzo, M. Taylor, and V. Yudin, 2015: Energy considerations in the Community Atmosphere Model (CAM). J. Adv. Model. Earth Syst., 7, 11781188, https://doi.org/10.1002/2015MS000448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zender, C. S., 2008: Analysis of self-describing gridded geoscience data with netCDF operators (NCO). Environ. Modell. Software, 23, 13381342, https://doi.org/10.1016/j.envsoft.2008.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 364 351 21
Full Text Views 131 126 2
PDF Downloads 120 115 2

Conservation of Dry Air, Water, and Energy in CAM and Its Potential Impact on Tropical Rainfall

Bryce E. HarropaPacific Northwest National Laboratory, Richland, Washington

Search for other papers by Bryce E. Harrop in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3952-4525
,
Michael S. PritchardbUniversity of California Irvine, Irvine, California

Search for other papers by Michael S. Pritchard in
Current site
Google Scholar
PubMed
Close
,
Hossein ParishanibUniversity of California Irvine, Irvine, California

Search for other papers by Hossein Parishani in
Current site
Google Scholar
PubMed
Close
,
Andrew GettelmancNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew Gettelman in
Current site
Google Scholar
PubMed
Close
,
Samson HagosaPacific Northwest National Laboratory, Richland, Washington

Search for other papers by Samson Hagos in
Current site
Google Scholar
PubMed
Close
,
Peter H. LauritzencNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Peter H. Lauritzen in
Current site
Google Scholar
PubMed
Close
,
L. Ruby LeungaPacific Northwest National Laboratory, Richland, Washington

Search for other papers by L. Ruby Leung in
Current site
Google Scholar
PubMed
Close
,
Jian LuaPacific Northwest National Laboratory, Richland, Washington

Search for other papers by Jian Lu in
Current site
Google Scholar
PubMed
Close
,
Kyle G. PresselaPacific Northwest National Laboratory, Richland, Washington

Search for other papers by Kyle G. Pressel in
Current site
Google Scholar
PubMed
Close
, and
Koichi SakaguchiaPacific Northwest National Laboratory, Richland, Washington

Search for other papers by Koichi Sakaguchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

For the Community Atmosphere Model version 6 (CAM6), an adjustment is needed to conserve dry air mass. This adjustment exposes an inconsistency in how CAM6’s energy budget incorporates water—in CAM6 water in the vapor phase has energy, but condensed phases of water do not. When water vapor condenses, only its latent energy is retained in the model, while its remaining internal, potential, and kinetic energy are lost. A global fixer is used in the default CAM6 model to maintain global energy conservation, but locally the energy tendency associated with water changing phase violates the divergence theorem. This error in energy tendency is intrinsically tied to the water vapor tendency, and reaches its highest values in regions of heavy rainfall, where the error can be as high as 40 W m−2 annually averaged. Several possible changes are outlined within this manuscript that would allow CAM6 to satisfy the divergence theorem locally. These fall into one of two categories: 1) modifying the surface flux to balance the local atmospheric energy tendency and 2) modifying the local atmospheric tendency to balance the surface plus top-of-atmosphere energy fluxes. To gauge which aspects of the simulated climate are most sensitive to this error, the simplest possible change—where condensed water still does not carry energy and a local energy fixer is used in place of the global one—is implemented within CAM6. Comparing this experiment with the default configuration of CAM6 reveals precipitation, particularly its variability, to be highly sensitive to the energy budget formulation.

Significance Statement

This study examines and explains spurious regional sources and sinks of energy in a widely used climate model. These energy errors result from not tracking energy associated with water after it transitions from the vapor phase to either liquid or ice. Instead, the model used a global fixer to offset the energy tendency related to the energy sources and sinks associated with condensed water species. We replace this global fixer with a local one to examine the model sensitivity to the regional energy error and find a large sensitivity in the simulated hydrologic cycle. This work suggests that the underlying thermodynamic assumptions in the model should be revisited to build confidence in the model-simulated regional-scale water and energy cycles.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bryce E. Harrop, bryce.harrop@pnnl.gov

Abstract

For the Community Atmosphere Model version 6 (CAM6), an adjustment is needed to conserve dry air mass. This adjustment exposes an inconsistency in how CAM6’s energy budget incorporates water—in CAM6 water in the vapor phase has energy, but condensed phases of water do not. When water vapor condenses, only its latent energy is retained in the model, while its remaining internal, potential, and kinetic energy are lost. A global fixer is used in the default CAM6 model to maintain global energy conservation, but locally the energy tendency associated with water changing phase violates the divergence theorem. This error in energy tendency is intrinsically tied to the water vapor tendency, and reaches its highest values in regions of heavy rainfall, where the error can be as high as 40 W m−2 annually averaged. Several possible changes are outlined within this manuscript that would allow CAM6 to satisfy the divergence theorem locally. These fall into one of two categories: 1) modifying the surface flux to balance the local atmospheric energy tendency and 2) modifying the local atmospheric tendency to balance the surface plus top-of-atmosphere energy fluxes. To gauge which aspects of the simulated climate are most sensitive to this error, the simplest possible change—where condensed water still does not carry energy and a local energy fixer is used in place of the global one—is implemented within CAM6. Comparing this experiment with the default configuration of CAM6 reveals precipitation, particularly its variability, to be highly sensitive to the energy budget formulation.

Significance Statement

This study examines and explains spurious regional sources and sinks of energy in a widely used climate model. These energy errors result from not tracking energy associated with water after it transitions from the vapor phase to either liquid or ice. Instead, the model used a global fixer to offset the energy tendency related to the energy sources and sinks associated with condensed water species. We replace this global fixer with a local one to examine the model sensitivity to the regional energy error and find a large sensitivity in the simulated hydrologic cycle. This work suggests that the underlying thermodynamic assumptions in the model should be revisited to build confidence in the model-simulated regional-scale water and energy cycles.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bryce E. Harrop, bryce.harrop@pnnl.gov
Save