Influence of Anthropogenic Warming on the Atlantic Multidecadal Variability and Its Impact on Global Climate in the Twenty-First Century in the MPI-GE Simulations

Minhua Qin aDepartment of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China
bKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Minhua Qin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9705-3234
,
Aiguo Dai cDepartment of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Aiguo Dai in
Current site
Google Scholar
PubMed
Close
, and
Wenjian Hua bKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Wenjian Hua in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The Atlantic multidecadal variability (AMV), a dominant mode of multidecadal variations in North Atlantic sea surface temperatures (NASST), has major impacts on global climate. Given that both internal variability and external forcing have contributed to the historical AMV, how future anthropogenic forcing may regulate the AMV is of concern but remains unclear. By analyzing observations and a large ensemble of model simulations [i.e., the Max Planck Institute Grand Ensemble (MPI-GE)], the internally generated (AMVIV) and externally forced (AMVEX) components of the AMV and their climatic impacts during the twenty-first century are examined. Consistent with previous findings, the AMVIV would weaken with future warming by 11%–17% in its amplitude by the end of the twenty-first century, along with reduced warming anomaly over the midlatitude North Atlantic under future warming during the positive AMVIV phases. In contrast, the AMVEX is projected to strengthen with reduced frequency under future warming. Furthermore, future AMVIV-related temperature variations would weaken over Eurasia and North Africa but strengthen over the United States, whereas AMVIV-related precipitation over parts of North America and Eurasia would weaken in a warmer climate. The AMVEX’s impact on global precipitation would also weaken. The results provide new evidence that future anthropogenic forcing (i.e., nonlinear changes in GHGs and aerosols) under different scenarios can generate distinct multidecadal variations and influence the internally generated AMV, and that multidecadal changes in anthropogenic forcing are important for future AMV.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Wenjian Hua, wenjian@nuist.edu.cn; Aiguo Dai, adai@albany.edu

Abstract

The Atlantic multidecadal variability (AMV), a dominant mode of multidecadal variations in North Atlantic sea surface temperatures (NASST), has major impacts on global climate. Given that both internal variability and external forcing have contributed to the historical AMV, how future anthropogenic forcing may regulate the AMV is of concern but remains unclear. By analyzing observations and a large ensemble of model simulations [i.e., the Max Planck Institute Grand Ensemble (MPI-GE)], the internally generated (AMVIV) and externally forced (AMVEX) components of the AMV and their climatic impacts during the twenty-first century are examined. Consistent with previous findings, the AMVIV would weaken with future warming by 11%–17% in its amplitude by the end of the twenty-first century, along with reduced warming anomaly over the midlatitude North Atlantic under future warming during the positive AMVIV phases. In contrast, the AMVEX is projected to strengthen with reduced frequency under future warming. Furthermore, future AMVIV-related temperature variations would weaken over Eurasia and North Africa but strengthen over the United States, whereas AMVIV-related precipitation over parts of North America and Eurasia would weaken in a warmer climate. The AMVEX’s impact on global precipitation would also weaken. The results provide new evidence that future anthropogenic forcing (i.e., nonlinear changes in GHGs and aerosols) under different scenarios can generate distinct multidecadal variations and influence the internally generated AMV, and that multidecadal changes in anthropogenic forcing are important for future AMV.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Wenjian Hua, wenjian@nuist.edu.cn; Aiguo Dai, adai@albany.edu
Save
  • Bellomo, K., L. N. Murphy, M. A. Cane, A. C. Clement, and L. M. Polvani, 2018: Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble. Climate Dyn., 50, 36873698, https://doi.org/10.1007/s00382-017-3834-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellucci, A., A. Mariotti, and S. Gualdi, 2017: The role of forcings in the twentieth-century North Atlantic multidecadal variability: The 1940–75 North Atlantic cooling case study. J. Climate, 30, 73177337, https://doi.org/10.1175/JCLI-D-16-0301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, B. B. B., 2015: Why the Pacific is cool. Science, 347, 952, https://doi.org/10.1126/science.aaa4840.

  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, https://doi.org/10.1038/nature10946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caesar, L., S. Rahmstorf, A. Robinson, G. Feulner, and V. Saba, 2018: Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556, 191196, https://doi.org/10.1038/s41586-018-0006-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, https://doi.org/10.1038/nclimate2743.

  • Cheng, J., Z. Liu, S. Zhang, W. Liu, L. Dong, P. Liu, and H. Li, 2016: Reduced interdecadal variability of Atlantic meridional overturning circulation under global warming. Proc. Natl. Acad. Sci. USA, 113, 31753178, https://doi.org/10.1073/pnas.1519827113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chylek, P., J. D. Klett, G. Lesins, M. K. Dubey, and N. Hengartner, 2014: The Atlantic multidecadal oscillation as a dominant factor of oceanic influence on climate. Geophys. Res. Lett., 41, 16891697, https://doi.org/10.1002/2014GL059274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A., K. Bellomo, L. N. Murphy, M. A. Cane, T. Mauritsen, G. Rädel, and B. Stevens, 2015: The Atlantic multidecadal oscillation without a role for ocean circulation. Science, 350, 320324, https://doi.org/10.1126/science.aab3980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 10291136.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and C. E. Bloecker, 2019: Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Climate Dyn., 52, 289306, https://doi.org/10.1007/s00382-018-4132-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., A. Hu, G. A. Meehl, W. M. Washington, and W. G. Strand, 2005: Atlantic thermohaline circulation in a coupled circulation model: Unforced variations versus forced changes. J. Climate, 18, 32703293, https://doi.org/10.1175/JCLI3481.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., J. C. Fyfe, S.-P. Xie, and X. Dai, 2015: Decadal modulation of global surface temperature by internal climate variability. Nat. Climate Change, 5, 555559, https://doi.org/10.1038/nclimate2605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676, https://doi.org/10.1007/s003820000075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and K. W. Dixon, 2006: Have anthropogenic aerosols delayed a greenhouse gas-induced weakening of the North Atlantic thermohaline circulation? Geophys. Res. Lett., 33, L02606, https://doi.org/10.1029/2005GL024980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2016: The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic meridional overturning circulation. J. Climate, 29, 941962, https://doi.org/10.1175/JCLI-D-15-0396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, L. Zhang, R. Zhang, G. A. Vecchi, and X. Yang, 2017: The central role of ocean dynamics in connecting the North Atlantic Oscillation to the extratropical component of the Atlantic multidecadal oscillation. J. Climate, 30, 37893805, https://doi.org/10.1175/JCLI-D-16-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, J., and A. Dai, 2021: Sea ice–air interactions amplify multidecadal variability in the North Atlantic and Arctic region. Research Square, preprint, https://doi.org/10.21203/rs.3.rs-81129/v1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and A. S. Phillips, 2021: Defining the internal component of Atlantic multidecadal variability in a changing climate. Geophys. Res. Lett., 48, e2021GL095023, https://doi.org/10.1029/2021GL095023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2020: Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Climate Change, 10, 277286, https://doi.org/10.1038/s41558-020-0731-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., W. Hazeleger, F. Selten, and R. Haarsma, 2008: Future changes in internal variability of the Atlantic meridional overturning circulation. Climate Dyn., 30, 407419, https://doi.org/10.1007/s00382-007-0297-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320, 602607, https://doi.org/10.1038/320602a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., M. H. England, M. E. Mann, and B. A. Steinman, 2015: Separating internal variability from the externally forced climate response. J. Climate, 28, 81848202, https://doi.org/10.1175/JCLI-D-15-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., M. H. England, J. B. Kajtar, M. E. Mann, and B. A. Steinman, 2018: On the choice of ensemble mean for estimating the forced signal in the presence of internal variability. J. Climate, 31, 56815693, https://doi.org/10.1175/JCLI-D-17-0662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghosh, R., W. A. Müller, J. Baehr, and J. Bader, 2017: Impact of observed North Atlantic multidecadal variations to European summer climate: A linear baroclinic response to surface heating. Climate Dyn., 48, 35473563, https://doi.org/10.1007/s00382-016-3283-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572597, https://doi.org/10.1002/jame.20038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haustein, K., and Coauthors, 2019: A limited role for unforced internal variability in twentieth-century warming. J. Climate, 32, 48934917, https://doi.org/10.1175/JCLI-D-18-0555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, W., A. Dai, and M. Qin, 2018: Contributions of internal variability and external forcing to the recent Pacific decadal variations. Geophys. Res. Lett., 45, 70847092, https://doi.org/10.1029/2018GL079033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, W., A. Dai, L. Zhou, M. Qin, and H. Chen, 2019: An externally-forced decadal rainfall seesaw pattern over the Sahel and southeast Amazon. Geophys. Res. Lett., 46, 923932, https://doi.org/10.1029/2018GL081406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, W., M. Qin, A. Dai, L. Zhou, H. Chen, and W. Zhang, 2021: Reconciling human and natural drivers of the tripole pattern of multidecadal summary temperature variations over Eurasia. Geophys. Res. Lett., 48, e2021GL093971, https://doi.org/10.1029/2021GL093971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keil, P., T. Mauritsen, J. Jungclaus, C. Hedemann, D. Olonscheck, and R. Ghosh, 2020: Multiple drivers of the North Atlantic warming hole. Nat. Climate Change, 10, 667671, https://doi.org/10.1038/s41558-020-0819-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, https://doi.org/10.1126/science.288.5473.1984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, https://doi.org/10.1029/2005GL024233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, https://doi.org/10.1029/2006GL026242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157, https://doi.org/10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., G. P. Kyle, M. Meinshausen, K. Riahi, S. J. Smith, D. P. van Vuuren, A. J. Conley, and F. Vitt, 2011: Global and regional evolution of short-lived radiatively-active gases and aerosols in the representative concentration pathways. Climatic Change, 109, 191212, https://doi.org/10.1007/s10584-011-0155-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., A. V. Fedorov, S.-P. Xie, and S. Hu, 2020: Climate impacts of a weakened Atlantic meridional overturning circulation in a warming climate. Sci. Adv., 6, eaaz4876, https://doi.org/10.1126/sciadv.aaz4876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., B. Dong, and H. Ding, 2006: Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon. Geophys. Res. Lett., 33, L24701, https://doi.org/10.1029/2006GL027655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyu, K., and J.-Y. Yu, 2017: Climate impacts of the Atlantic multidecadal oscillation simulated in the CMIP5 models: A re-evaluation based on a revised index. Geophys. Res. Lett., 44, 38673876, https://doi.org/10.1002/2017GL072681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, N., and Coauthors, 2019: The Max Planck Institute Grand Ensemble: Enabling the exploration of climate system variability. J. Adv. Model. Earth Syst., 11, 20502069, https://doi.org/10.1029/2019MS001639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and K. A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87, 233241, https://doi.org/10.1029/2006EO240001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, E. R., C. D. Thorncroft, and B. B. Booth, 2014: The multidecadal Atlantic SST–Sahel rainfall teleconnection in CMIP5 simulations. J. Climate, 27, 784806, https://doi.org/10.1175/JCLI-D-13-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., J. Robson, B. Dong, and D. Hodson, 2021: Role of the Atlantic multidecadal variability in modulating East Asian climate. Climate Dyn., 56, 381398, https://doi.org/10.1007/s00382-020-05477-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Murphy, L. N., K. Bellomo, M. Cane, and A. Clement, 2017: The role of historical forcings in simulating the observed Atlantic multidecadal oscillation. Geophys. Res. Lett., 44, 24722480, https://doi.org/10.1002/2016GL071337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., T. Woollings, and L. Zanna, 2017: The dynamical influence of the Atlantic multidecadal oscillation on continental climate. J. Climate, 30, 72137230, https://doi.org/10.1175/JCLI-D-16-0345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otterå, O. H., M. Bentsen, H. Drange, and L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci., 3, 688694, https://doi.org/10.1038/ngeo955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qasmi, S., C. Cassou, and J. Boé, 2017: Teleconnection between Atlantic multidecadal variability and European temperature: Diversity and evaluation of the Coupled Model Intercomparison Project phase 5 models. Geophys. Res. Lett., 44, 11 14011 149, https://doi.org/10.1002/2017GL074886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, M., A. Dai, and W. Hua, 2020a: Aerosol-forced multidecadal variations across all ocean basins in models and observations since 1920. Sci. Adv., 6, eabb0425, https://doi.org/10.1126/sciadv.abb0425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, M., A. Dai, and W. Hua, 2020b: Atlantic multidecadal variability resulted from internal variability and volcanic and anthropogenic aerosols since 1870. Geophys. Res. Lett., 47, e2020GL089504, https://doi.org/10.1029/2020GL089504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reintges, A., T. Martin, M. Latif, and N. S. Keenlyside, 2017: Uncertainty in twenty-first century projections of the Atlantic meridional overturning circulation in CMIP3 and CMIP5 models. Climate Dyn., 49, 14951511, https://doi.org/10.1007/s00382-016-3180-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., R. Msadek, F. Castruccio, S. Yeager, T. Delworth, and G. Danabasoglu, 2017: Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Climate, 30, 27852810, https://doi.org/10.1175/JCLI-D-16-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., T. Delworth, R. Msadek, F. Castruccio, S. Yeager, and G. Danabasoglu, 2018: Impacts of the Atlantic multidecadal variability on North American summer climate and heat waves. J. Climate, 31, 36793700, https://doi.org/10.1175/JCLI-D-17-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, https://doi.org/10.1038/367723a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Si, D., and A. Hu, 2017: Internally generated and externally forced multidecadal oceanic modes and their influence on the summer rainfall over East Asia. J. Climate, 30, 82998316, https://doi.org/10.1175/JCLI-D-17-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. J., and T. C. Bond, 2014: Two hundred fifty years of aerosols and climate: The end of the age of aerosols. Atmos. Chem. Phys., 14, 537549, https://doi.org/10.5194/acp-14-537-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinman, B. A., M. E. Mann, and S. K. Miller, 2015: Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347, 988991, https://doi.org/10.1126/science.1257856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., J. Li, and F.-F. Jin, 2015: A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Climate Dyn., 45, 20832099, https://doi.org/10.1007/s00382-014-2459-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, https://doi.org/10.1126/science.1109496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and B. Dong, 2012: Atlantic Ocean influence on a shift in European climate in the 1990s. Nat. Geosci., 5, 788792, https://doi.org/10.1038/ngeo1595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, N. F., and P. J. Kushner, 2015: Does external forcing interfere with the AMOC’s influence on North Atlantic sea surface temperature? J. Climate, 28, 63096323, https://doi.org/10.1175/JCLI-D-14-00664.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, L., 2012: Evidence for multiple drivers of North Atlantic multi-decadal climate variability. Geophys. Res. Lett., 39, L19712, https://doi.org/10.1029/2012GL053046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, https://doi.org/10.1175/2008JCLI2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2011: Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705, https://doi.org/10.1029/2011GL048712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., T. L. Delworth, and B. Booth, 2017: Origins of Atlantic decadal swings. Nature, 548, 284285, https://doi.org/10.1038/nature23538.

  • Wang, C., S. Dong, A. T. Evan, G. R. Foltz, and S.-K. Lee, 2012: Multidecadal covariability of North Atlantic sea surface temperature, African dust, Sahel rainfall, and Atlantic hurricanes. J. Climate, 25, 54045415, https://doi.org/10.1175/JCLI-D-11-00413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and H. Tatebe, 2019: Reconciling roles of sulphate aerosol forcing and internal variability in Atlantic multidecadal climate changes. Climate Dyn., 53, 46514665, https://doi.org/10.1007/s00382-019-04811-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, S., and Z. Liu, 2020: Decadal variability in the North Pacific and North Atlantic under global warming: The weakening response and its mechanism. J. Climate, 33, 91819193, https://doi.org/10.1175/JCLI-D-19-1012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, S., Z. Liu, J. Cheng, and C. Li, 2018: Response of North Pacific and North Atlantic decadal variability to weak global warming. Adv. Climate Change Res., 9, 95101, https://doi.org/10.1016/j.accre.2018.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 1, 141, https://doi.org/10.1142/S1793536909000047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., and A. Hu, 2018: How would the 21st-century warming influence Pacific decadal variability and its connection to North American rainfall: Assessment based on a revised procedure for IPO/PDO. J. Climate, 31, 15471563, https://doi.org/10.1175/JCLI-D-17-0319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, https://doi.org/10.1029/2006GL026267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Sutton, G. Danabasoglu, Y.-O. Kwon, R. Marsh, S. G. Yeager, D. E. Amrhein, and C. M. Little, 2019: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys., 57, 316375, https://doi.org/10.1029/2019RG000644.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 465 0 0
Full Text Views 889 453 125
PDF Downloads 633 187 6