Tropical, Subtropical, and Extratropical Atmospheric Rivers in the Australian Region

Kimberley J. Reid aSchool of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, Victoria, Australia
bAustralian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia 

Search for other papers by Kimberley J. Reid in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5972-6015
,
Andrew D. King aSchool of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, Victoria, Australia
bAustralian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia 

Search for other papers by Andrew D. King in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9006-5745
,
Todd P. Lane aSchool of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, Victoria, Australia
bAustralian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia 

Search for other papers by Todd P. Lane in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0171-6927
, and
Debra Hudson cBureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Debra Hudson in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0129-0922
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Studies of atmospheric rivers (ARs) over Australia have, so far, only focused on northwest cloudband–type weather systems. Here we perform a comprehensive analysis of AR climatology and impacts over Australia that includes not only northwesterly systems, but easterly and extratropical ARs also. We quantify the impact of ARs on mean and extreme rainfall including assessing how the origin location of ARs can alter their precipitation outcomes. We found a strong relationship between ARs and extreme rainfall in the agriculturally significant Murray–Daring basin region. We test the hypothesis that the tropical and subtropical originating ARs we observe in Australasia differ from canonical extratropical ARs by examining the vertical structure of ARs grouped by origin location. We found that in the moisture abundant tropics and subtropics, wind speed drives the intensity of ARs, while in the extratropics, the strength of an AR is largely determined by moisture availability. Finally, we examine the modulation of AR frequency by different climate modes. We find weak (but occasionally significant) correlations between ARs frequency and El Niño–Southern Oscillation, the Indian Ocean dipole, and the southern annular mode. However, there is a stronger relationship between the phases of the Madden–Julian oscillation and tropical AR frequency, which is an avenue for potential skill in forecasting ARs on subseasonal time scales.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Reid’s ORCID: 0000-0001-5972-6015.

King’s ORCID: 0000-0001-9006-5745.

Lane’s ORCID: 0000-0003-0171-6927.

Hudson’s ORCID: 0000-0002-0129-0922.

Corresponding author: Kimberley J. Reid, kim.reid@monash.edu

Abstract

Studies of atmospheric rivers (ARs) over Australia have, so far, only focused on northwest cloudband–type weather systems. Here we perform a comprehensive analysis of AR climatology and impacts over Australia that includes not only northwesterly systems, but easterly and extratropical ARs also. We quantify the impact of ARs on mean and extreme rainfall including assessing how the origin location of ARs can alter their precipitation outcomes. We found a strong relationship between ARs and extreme rainfall in the agriculturally significant Murray–Daring basin region. We test the hypothesis that the tropical and subtropical originating ARs we observe in Australasia differ from canonical extratropical ARs by examining the vertical structure of ARs grouped by origin location. We found that in the moisture abundant tropics and subtropics, wind speed drives the intensity of ARs, while in the extratropics, the strength of an AR is largely determined by moisture availability. Finally, we examine the modulation of AR frequency by different climate modes. We find weak (but occasionally significant) correlations between ARs frequency and El Niño–Southern Oscillation, the Indian Ocean dipole, and the southern annular mode. However, there is a stronger relationship between the phases of the Madden–Julian oscillation and tropical AR frequency, which is an avenue for potential skill in forecasting ARs on subseasonal time scales.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Reid’s ORCID: 0000-0001-5972-6015.

King’s ORCID: 0000-0001-9006-5745.

Lane’s ORCID: 0000-0003-0171-6927.

Hudson’s ORCID: 0000-0002-0129-0922.

Corresponding author: Kimberley J. Reid, kim.reid@monash.edu
Save
  • Adamson, D., T. Mallawaarachchi, and J. Quiggin, 2009: Declining inflows and more frequent droughts in the Murray–Darling basin: Climate change, impacts and adaptation. Aust. J. Agric. Resour. Econ., 53, 345366, https://doi.org/10.1111/j.1467-8489.2009.00451.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arabzadeh, A., M. R. Ehsani, B. Guan, S. Heflin, and A. Behrangi, 2020: Global intercomparison of atmospheric rivers precipitation in remote sensing and reanalysis products. J. Geophys. Res. Atmos., 125, e2020JD033021, https://doi.org/10.1029/2020JD033021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baggett, C. F., E. A. Barnes, E. D. Maloney, and B. D. Mundhenk, 2017: Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys. Res. Lett., 44, 75287536, https://doi.org/10.1002/2017GL074434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, A. S., and Coauthors, 2021: Australian Northwest cloudbands and their relationship to atmospheric rivers and precipitation. Mon. Wea. Rev., 149, 11251139, https://doi.org/10.1175/MWR-D-20-0308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bureau of Meteorology, 2021: Madden–Julian Oscillation (MJO) monitoring. Bureau of Meteorology, accessed 26 April 2021, http://www.bom.gov.au/climate/mjo/.

    • Search Google Scholar
    • Export Citation
  • Chen, J., H. Zhang, C. Ye, H. Chen, and R. Mo, 2020: Case studies of atmospheric rivers over China and Australia: New insight into their rainfall generation. J. South. Hemisphere Earth Syst. Sci., 70, 1735, https://doi.org/10.1071/ES19026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, S., M. J. Reeder, and C. Jakob, 2018: Rainfall regimes over northwestern Australia. Quart. J. Roy. Meteor. Soc., 144, 458467, https://doi.org/10.1002/qj.3217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., O. Martínez-Alvarado, and C. O. Mbengue, 2019: Linking atmospheric rivers and warm conveyor belt airflows. J. Hydrometeor., 20, 11831196, https://doi.org/10.1175/JHM-D-18-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., I. Algarra, J. Eiras-Barca, A. M. Ramos, and R. Nieto, 2021: Atmospheric river, a term encompassing different meteorological patterns. Wiley Interdiscip. Rev.: Water, 8, e1558, https://doi.org/10.1002/wat2.1558.

    • Search Google Scholar
    • Export Citation
  • Gonzales, K. R., D. L. Swain, E. A. Barnes, and N. S. Diffenbaugh, 2020: Moisture‐ versus wind‐dominated flavors of atmospheric rivers. Geophys. Res. Lett., 47, e2020GL090042, https://doi.org/10.1029/2020GL090042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2017: Atmospheric rivers in 20 year weather and climate simulations: A multimodel, global evaluation. J. Geophys. Res. Atmos., 122, 55565581, https://doi.org/10.1002/2016JD026174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2019: Tracking atmospheric rivers globally: Spatial distributions and temporal evolution of life cycle characteristics. J. Geophys. Res. Atmos., 124, 12 52312 552, https://doi.org/10.1029/2019JD031205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, N. P. Molotch, E. J. Fetzer, and P. J. Neiman, 2012: Does the Madden–Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon. Wea. Rev., 140, 325342, https://doi.org/10.1175/MWR-D-11-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauser, S., C. M. Grams, M. J. Reeder, S. McGregor, A. H. Fink, and J. F. Quinting, 2020: A weather system perspective on winter-spring rainfall variability in southeastern Australia during El Niño. Quart. J. Roy. Meteor. Soc., 146, 26142633, https://doi.org/10.1002/qj.3808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, No. 159, ECMWF, Reading, United Kingdom, 1724, https://doi.org/10.21957/vf291hehd7.

    • Search Google Scholar
    • Export Citation
  • Holgate, C. M., J. P. Evans, A. I. J. M. van Dijk, A. J. Pitman, and G. Di Virgilio, 2020: Australian precipitation recycling and evaporative source regions. J. Climate, 33, 87218735, https://doi.org/10.1175/JCLI-D-19-0926.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, D. A., W. Wang, and R. Fawcett, 2009: High-quality spatial climate data-sets for Australia. Aust. Meteor. Oceanogr. J., 58, 233248, https://doi.org/10.22499/2.5804.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamae, Y., W. Mei, S.-P. Xie, M. Naoi, and H. Ueda, 2017: Atmospheric rivers over the northwestern Pacific: Climatology and interannual variability. J. Climate, 30, 56055619, https://doi.org/10.1175/JCLI-D-16-0875.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingston, D. G., D. A. Lavers, and D. M. Hannah, 2016: Floods in the Southern Alps of New Zealand: The importance of atmospheric rivers. Hydrol. Processes, 30, 50635070, https://doi.org/10.1002/hyp.10982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., H. Wernli, and G. Gläser, 2013: A global climatology of tropical moisture exports. J. Climate, 26, 30313045, https://doi.org/10.1175/JCLI-D-12-00401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavender, S. L., and D. J. Abbs, 2012: Trends in Australian rainfall: Contribution of tropical cyclones and closed lows. Climate Dyn., 40, 317326, https://doi.org/10.1007/s00382-012-1566-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, https://doi.org/10.1029/2011GL049783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Little, K., D. G. Kingston, N. J. Cullen, and P. B. Gibson, 2019: The role of atmoshperic rivers for extreme ablation and snowfall events in the Southern Alps of New Zealand. Geophys. Res. Lett., 46, 27612771, https://doi.org/10.1029/2018GL081669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lora, J. M., C. A. Shields, and J. J. Rutz, 2020: Consensus and disagreement in atmospheric river detection: ARTMIP global catalogues. Geophys. Res. Lett., 47, e2020GL089302, https://doi.org/10.1029/2020GL089302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, Z., S. W., Son, A., Butler, H., Hendon, H., Kim, A., Sobel, S. Yoden, and C. Zhang, 2021: The influence of the quasi-biennial oscillation on the Madden–Julian Oscillation. Nat. Rev. Earth Environ., 2, 477489, https://doi.org/10.1038/s43017-021-00173-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meneghini, B., I. Simmonds, and I. N. Smith, 2007: Association between Australian rainfall and the southern annular mode. Int. J. Climatol., 27, 109121, https://doi.org/10.1002/joc.1370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13, 35993610, https://doi.org/10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, and E. D. Maloney, 2016: All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Climate, 29, 48854903, https://doi.org/10.1175/JCLI-D-15-0655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, E. D. Maloney, and C. F. Baggett, 2018: Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden–Julian oscillation and quasi-biennial oscillation. npj Climate Atmos. Sci., 1, 20177, https://doi.org/10.1038/s41612-017-0008-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Center for Atmospheric Research Staff, 2021: The Climate Data Guide: SST data: HadiSST v1.1. NCAR, accessed 8 February 2021, https://climatedataguide.ucar.edu/climate-data/sst-data-hasisst-v11.

    • Search Google Scholar
    • Export Citation
  • Paltan, H., D. Waliser, W. H. Lim, B. Guan, D. Yamazaki, R. Pant, and S. Dadson, 2017: Global floods and water availability driven by atmospheric rivers. Geophys. Res. Lett., 44, 10 38710 395, https://doi.org/10.1002/2017GL074882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, M., and M. Lu, 2020: East Asia atmospheric river catalog: Annual cycle, transition mechanism, and precipitation. Geophys. Res. Lett., 47, e2020GL089477, https://doi.org/10.1029/2020GL089477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and G. Magnusdottir, 2014: Dynamics of landfalling atmospheric rivers over the North Pacific in 30 years of MERRA reanalysis. J. Climate, 27, 71337150, https://doi.org/10.1175/JCLI-D-14-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and Coauthors, 2020: Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ., 1, 143157, https://doi.org/10.1038/s43017-020-0030-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pook, M. J., J. S. Risbey, and P. C. McIntosh, 2013: A comparative synoptic climatology of cool-season rainfall in major grain-growing regions of southern Australia. Theor. Appl. Climatol., 117, 521533, https://doi.org/10.1007/s00704-013-1021-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prince, H. D., N. J. Cullen, P. B. Gibson, J. Conway, and D. G. Kingston, 2021: A climatology of atmospheric rivers in New Zealand. J. Climate, 34, 43834402, https://doi.org/10.1175/JCLI-D-20-0664.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and R. Rotunno, 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910, https://doi.org/10.1175/MWR2896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian river: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., M. D. Dettinger, M. M. Cairns, T. J. Galarneau, and J. Eylander, 2018: Defining “atmospheric river”: How the Glossary of Meteorology helped resolve a debate. Bull. Amer. Meteor. Soc., 99, 837839, https://doi.org/10.1175/BAMS-D-17-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., H. Hu, F. Dominguez, S. W. Nesbitt, G. M. McFarquhar, T. J. Zaremba, and J. A. Finlon, 2020: Structure of an atmospheric river over Australia and the Southern Ocean. Part I: Tropical and midlatitude water vapor fluxes. J. Geophys. Res. Atmos., 125, e2020JD032513, https://doi.org/10.1029/2020JD032513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, K. J., I. Simmonds, C. L. Vincent, and A. D. King, 2019: The Australian Northwest cloudband: Climatology, mechanisms, and association with precipitation. J. Climate, 32, 66656684, https://doi.org/10.1175/JCLI-D-19-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, K. J., A. D. King, T. P. Lane, and E. Short, 2020: The sensitivity of atmospheric river identification to integrated water vapor transport threshold, resolution, and regridding method. J. Geophys. Res. Atmos., 125, e2020JD032897, https://doi.org/10.1029/2020JD032897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, K. J., S. M. Rosier, L. J. Harrington, A. D. King, and T. P. Lane, 2021: Extreme rainfall in New Zealand and its association with atmospheric rivers. Environ. Res. Lett., 16, 044012, https://doi.org/10.1088/1748-9326/abeae0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., M. J. Pook, P. C. McIntosh, M. C. Wheeler, and H. H. Hendon, 2009: On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137, 32333253, https://doi.org/10.1175/2009MWR2861.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., and Coauthors, 2019: The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying uncertainties in atmospheric river climatology. J. Geophys. Res. Atmos., 124, 13 77713 802, https://doi.org/10.1029/2019JD030936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellars, S. L., B. Kawzenuk, P. Nguyen, F. M. Ralph, and S. Sorooshian, 2017: Genesis, pathways, and terminations of intense global water vapor transport in association with large-scale climate patterns. Geophys. Res. Lett., 44, 12 46512 475, https://doi.org/10.1002/2017GL075495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shields, C. A., and Coauthors, 2018: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geosci. Model Dev., 11, 24552474, https://doi.org/10.5194/gmd-11-2455-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., K. Keay, and J. A. T. Bye, 2012: Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis. J. Climate, 25, 19451962, https://doi.org/10.1175/JCLI-D-11-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapp, R. G., and S. L. Barrell, 1984: The north-west Australian cloud band: Climatology, characteristics and factors associated with development. J. Climatol., 4, 411424, https://doi.org/10.1002/joc.3370040406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Telcik, N., and C. Pattiaratchi, 2014: Influence of northwest cloudbands on southwest Australian rainfall. J. Climatol., 2014, 671394, https://doi.org/10.1155/2014/671394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K., and National Center for Atmospheric Research Staff, 2021: The Climate Data Guide: Nino SST Indices (Nino 1+2,2,3.4,4; ONI and TNI) (last modified 21 Jan 2020). NCAR, accessed 8 February 2021, https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., M. H. England, P. C. McIntosh, G. A. Meyers, M. J. Pook, J. S. Risbey, A. S. Gupta, and A. S. Taschetto, 2009: What causes southeast Australia’s worst droughts? Geophys. Res. Lett., 36, L04706, https://doi.org/10.1029/2008GL036801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viale, M., R. Valenzuela, R. D. Garreaud, and F. M. Ralph, 2018: Impacts of atmospheric rivers on precipitation in southern South America. J. Hydrometeor., 19, 16711687, https://doi.org/10.1175/JHM-D-18-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D., and B. Guan, 2017: Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci., 10, 179183, https://doi.org/10.1038/ngeo2894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., H. H. Hendon, S. Cleland, H. Meinke, and A. Donald, 2009: Impacts of the Madden–Julian Oscillation on Australian rainfall and circulation. J. Climate, 22, 14821498, https://doi.org/10.1175/2008JCLI2595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, C., F. Perez, and D. Branum, 2016: New method for estimating landslide losses from major winter storms in California and application to the ARkStorm scenario. Nat. Hazards Rev., 17 (4), https://doi.org/10.1061/(ASCE)NH.1527-6996.0000142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, W. J., 1988: The low latitude influence on winter rainfall in Victoria, south-eastern Australia-I. Climatological aspects. J. Climatol., 8, 437462, https://doi.org/10.1002/joc.3370080502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, W. J., 1997: Tropical–extratropical cloudbands and Australian rainfall: I. Climatology. Int. J. Climatol., 17, 807829, https://doi.org/10.1002/(SICI)1097-0088(19970630)17:8<807::AID-JOC162>3.0.CO;2-J.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Y., X. Pan, X. Yang, X. Wang, G. Wang, and S. Sun, 2019: Spatiotemporal changes and frequency analysis of multiday extreme precipitation in the Huai River basin during 1960 to 2014. Adv. Meteor., 2019, 6324878, https://doi.org/10.1155/2019/6324878.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., F. M. Ralph, and M. Zheng, 2019: The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophys. Res. Lett., 46, 18141823, https://doi.org/10.1029/2018GL079071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., H. Kim, and B. Guan, 2018: Life cycle of atmospheric rivers: Identification and climatological characteristics. J. Geophys. Res. Atmos., 123, 12 71512 725, https://doi.org/10.1029/2018JD029180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., H. Kim, and D. E. Waliser, 2021: Atmospheric river lifecycle responses to the Madden–Julian Oscillation. Geophys. Res. Lett., 48, e2020GL090983, https://doi.org/10.1029/2020GL090983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., R. E. Newell, Y. Zhu, and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1296 0 0
Full Text Views 1872 1012 273
PDF Downloads 1073 369 29