Synchronous Variation Patterns of Monthly Sea Ice Anomalies at the Arctic and Antarctic

Lejiang Yu aMNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China

Search for other papers by Lejiang Yu in
Current site
Google Scholar
PubMed
Close
,
Shiyuan Zhong bDepartment of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, Michigan

Search for other papers by Shiyuan Zhong in
Current site
Google Scholar
PubMed
Close
, and
Bo Sun aMNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China

Search for other papers by Bo Sun in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Sea ice variability in the opposite polar regions is examined holistically by applying the self-organizing map (SOM) method to global monthly sea ice concentration data over two periods. The results show that the variability modes of sea ice decrease in the Arctic correspond to an overall sea ice increase in the Antarctic, and vice versa. In particular, the monthly sea ice anomaly patterns are dominated by in-phase variability across the Arctic that is stronger in the marginal seas particularly the Barents Sea than the central Arctic Ocean. The corresponding Antarctic sea ice variability is characterized by a zonal wavenumber-3 structure or a dipole pattern of out-of-phase variability between the Bellingshausen/Amundsen Seas and the rest of the Southern Ocean. The frequency of occurrence of these dominant patterns exhibits pronounced seasonal as well as decadal variability and the latter is closely related to the Pacific decadal oscillation and Atlantic multidecadal oscillation. Other less frequent patterns seem to be associated with the central Pacific El Niño and spatially heterogeneous interannual variability of sea surface temperature (SST) in the Indian and the Atlantic Oceans. The dominant modes explain 57% of the four-decade domain-averaged trends in the annual polar sea ice concentration, with more explained in the eastern than western Arctic Ocean and in the Weddell Sea and the Amundsen Sea in the Antarctic. The spatial patterns of the leading modes can be largely explained by the dynamic (sea ice drift) and thermodynamic (sea ice melt) effects of the anomalous atmospheric circulations associated with SST and sea level pressure anomalies.

Significance Statement

The purpose of this study is to extract the main modes of monthly global sea ice concentration variability in the past four decades, explain the mechanisms behind the occurrences of these modes, and examine the contributions of these modes to the trend in annual global sea ice concentration. Sea ice extent in the past four decades has shown a significant declining trend in the Arctic and a slight, but significant increasing trend in the Antarctic. By jointly analyzing the sea ice variability and trends in the two polar regions, the results here provide a reference for what might have contributed to the opposite sea ice trends in Arctic and Antarctic and highlight the important influence of large-scale sea surface temperature anomalies on the trends in the two polar regions.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lejiang Yu, yulejiang@sina.com.cn

Abstract

Sea ice variability in the opposite polar regions is examined holistically by applying the self-organizing map (SOM) method to global monthly sea ice concentration data over two periods. The results show that the variability modes of sea ice decrease in the Arctic correspond to an overall sea ice increase in the Antarctic, and vice versa. In particular, the monthly sea ice anomaly patterns are dominated by in-phase variability across the Arctic that is stronger in the marginal seas particularly the Barents Sea than the central Arctic Ocean. The corresponding Antarctic sea ice variability is characterized by a zonal wavenumber-3 structure or a dipole pattern of out-of-phase variability between the Bellingshausen/Amundsen Seas and the rest of the Southern Ocean. The frequency of occurrence of these dominant patterns exhibits pronounced seasonal as well as decadal variability and the latter is closely related to the Pacific decadal oscillation and Atlantic multidecadal oscillation. Other less frequent patterns seem to be associated with the central Pacific El Niño and spatially heterogeneous interannual variability of sea surface temperature (SST) in the Indian and the Atlantic Oceans. The dominant modes explain 57% of the four-decade domain-averaged trends in the annual polar sea ice concentration, with more explained in the eastern than western Arctic Ocean and in the Weddell Sea and the Amundsen Sea in the Antarctic. The spatial patterns of the leading modes can be largely explained by the dynamic (sea ice drift) and thermodynamic (sea ice melt) effects of the anomalous atmospheric circulations associated with SST and sea level pressure anomalies.

Significance Statement

The purpose of this study is to extract the main modes of monthly global sea ice concentration variability in the past four decades, explain the mechanisms behind the occurrences of these modes, and examine the contributions of these modes to the trend in annual global sea ice concentration. Sea ice extent in the past four decades has shown a significant declining trend in the Arctic and a slight, but significant increasing trend in the Antarctic. By jointly analyzing the sea ice variability and trends in the two polar regions, the results here provide a reference for what might have contributed to the opposite sea ice trends in Arctic and Antarctic and highlight the important influence of large-scale sea surface temperature anomalies on the trends in the two polar regions.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lejiang Yu, yulejiang@sina.com.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.04 MB)
Save
  • Abrahamsen, E. P., and Coauthors, 2020: Antarctica and the Southern Ocean [in “State of the Climate in 2019”]. Bull. Amer. Meteor. Soc., 101 (8), S287S320, https://doi.org/10.1175/BAMS-D-20-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, J. K., and Coauthors, 2020: The Arctic [in “State of the Climate in 2019”]. Bull. Amer. Meteor. Soc., 101 (8), S239S286, https://doi.org/10.1175/BAMS-D-20-0086.1.

    • Search Google Scholar
    • Export Citation
  • Årthun, M., T. Eldevik, L. H. Smedsrud, Ø. Skagseth, and R. B. Ingvaldsen, 2012: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. J. Climate, 25, 47364743, https://doi.org/10.1175/JCLI-D-11-00466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and G. J. Marshall, 2012: The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J. Climate, 25, 71387146, https://doi.org/10.1175/JCLI-D-11-00685.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., and C. L. Parkinson, 2012: Arctic sea ice variability and trends, 1979–2010. The Cryosphere, 6, 881889, https://doi.org/10.5194/tc-6-881-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 17 March 2021, https://doi.org/10.5067/8GQ8LZQVL0VL.

    • Search Google Scholar
    • Export Citation
  • Chylek, P. C., K. Folland, G. Lesins, and M. K. Dubey, 2010: Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperature. Geophys. Res. Lett., 37, L08703, https://doi.org/10.1029/2010GL042793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., G. R. Simpkins, and M. H. England, 2015: Teleconnections between tropical Pacific SST anomalies and extratropical Southern Hemisphere climate. J. Climate, 28, 5665, https://doi.org/10.1175/JCLI-D-14-00438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and M. Küttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, https://doi.org/10.1038/ngeo1129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H.-J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, https://doi.org/10.1038/nature13260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H.-J. Kim, and L. Geng, 2017: Influence of high-latitude atmospheric circulation changes on summertime Arctic Sea ice. Nat. Climate Change, 7, 289295, https://doi.org/10.1038/nclimate3241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eayrs, C., D. Holland, D. Francis, T. Wagner, R. Kumar, and X. Li, 2019: Understanding the seasonal cycle of Antarctic sea ice extent in the context of longer-term variability. Rev. Geophys., 57, 10371064, https://doi.org/10.1029/2018RG000631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nunez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, K., A. Duan, D. Chen, and G. Wu, 2019: Surface energy budget diagnosis reveals possible mechanism for the different warming rate among Earth’s three poles in recent decades. Sci. Bull., 64, 11401143, https://doi.org/10.1016/j.scib.2019.06.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, T., S. Feldstein, and S. Lee, 2017: The role of downward infrared radiation in the recent Arctic winter warming trend. J. Climate, 30, 49374949, https://doi.org/10.1175/JCLI-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 30433057, https://doi.org/10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hewitson, B. C., and R. G. Crane, 2002: Self-organizing maps: Applications to synoptic climatology. Climate Res., 22, 1326, https://doi.org/10.3354/cr022013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, M. E., and J. J. Cassano, 2009: Impacts of reduced sea ice on winter Arctic atmospheric circulation, precipitation, and temperature. J. Geophys. Res., 114, D16107, https://doi.org/10.1029/2009JD011884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, W. R., R. Massom, S. Stammerjohn, P. Reid, G. Williams, and W. Meier, 2016: A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global Planet. Change, 143, 228250, https://doi.org/10.1016/j.gloplacha.2016.06.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and N. Kimura, 2016: Observed concentration budgets of Arctic and Antarctic sea ice. J. Climate, 29, 52415249, https://doi.org/10.1175/JCLI-D-16-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5), Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irving, D., and I. Simmonds, 2016: A new method for identifying the Pacific–South American pattern and its influence on regional climate variability. J. Climate, 29, 61096125, https://doi.org/10.1175/JCLI-D-15-0843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and D. H. Lister, 2015: Antarctic near‐surface air temperatures compared with ERA-Interim values since 1979. Int. J. Climatol., 35, 13541366, https://doi.org/10.1002/joc.4061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 1982: Self-organized formation of topologically correct feature maps. Biol. Cybern., 43, 5969, https://doi.org/10.1007/BF00337288.

  • Kohonen, T., 2001: Self-Organizing Maps. 3rd ed. Springer, 501 pp.

  • Lee, S., and S. B. Feldstein, 2013: Detecting ozone- and greenhouse gas–driven wind trends with observational data. Science, 339, 563567, https://doi.org/10.1126/science.1225154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynch, A. H., M. C. Serreze, E. N. Cassano, A. D. Crawford, and J. Stroeve, 2016: Linkages between Arctic summer circulation regimes and regional sea ice anomalies. J. Geophys. Res. Atmos., 121, 78687880, https://doi.org/10.1002/2016JD025164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maksym, T., 2019: Arctic and Antarctic sea ice change: Contrasts, commonalities, and causes. Annu. Rev. Mar. Sci., 11, 78687880, https://doi.org/10.1146/annurev-marine-010816-060610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, C. T. Y. Chung, M. M. Holland, A. DuVivier, L. Thompson, D. Yang, and C. M. Bitz, 2019: Sustained ocean changes contributed to sudden Antarctic Sea ice retreat in late 2016. Nat. Commun., 10, 14, https://doi.org/10.1038/s41467-018-07865-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, W. N., and Coauthors, 2014: Arctic sea ice in transformation: A review of recent changes and impacts on biology and human activity. Rev. Geophys., 52, 185217, https://doi.org/10.1002/2013RG000431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, C. M., and J. E. Walsh, 2014: Synoptic activity associated with sea ice variability in the Arctic. J. Geophys. Res. Atmos., 119, 12 11712 131, https://doi.org/10.1002/2014JD021604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., D. P. Monselesan, and J. S. Rishey, 2017: A multiscale reexamination of the Pacific–South American pattern. Mon. Wea. Rev., 145, 379402, https://doi.org/10.1175/MWR-D-16-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ordoñez, A. C., C. M. Bitz, and E. Blanchard-Wrigglesworth, 2018: Processes controlling Arctic and Antarctic sea ice predictability in the Community Earth System Model. J. Climate, 31, 97719786, https://doi.org/10.1175/JCLI-D-18-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2014: Global sea ice coverage from satellite data: Annual cycle and 35-yr trends. J. Climate, 27, 93779382, https://doi.org/10.1175/JCLI-D-14-00605.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2019: A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl. Acad. Sci. USA, 116, 14 41414 423, https://doi.org/10.1073/pnas.1906556116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., and R. B. Alley, 2007: Antarctic sea ice: A self-organizing map-based perspective. Ann. Glaciol., 46, 391396, https://doi.org/10.3189/172756407782871549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., R. B. Alley, and B. C. Hawitson, 2005: Relative performance of self organizing maps and principle component analysis in pattern extraction from synthetic climatological data. Polar Geogr., 29, 188212, https://doi.org/10.1080/789610199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., J. M. Wallace, and R. L. Colony, 2002: Response of sea ice to the Arctic Oscillation. J. Climate, 15, 26482663, https://doi.org/10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sammon, J. W., 1969: A non-linear mapping for data structure analysis. IEEE Trans. Comput., C-18, 401409, https://doi.org/10.1109/T-C.1969.222678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. H. England, 2006: Coupled ocean–atmosphere–ice response to variations in the southern annular mode. J. Climate, 19, 44574486, https://doi.org/10.1175/JCLI3843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and W. N. Meier, 2019: The Arctic’s sea ice cover: Trends, variability, predictability, and comparisons to Antarctic. Ann. N.Y. Acad. Sci., 1436, 3653, https://doi.org/10.1111/nyas.13856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 2015: Comparing and contrasting the behavior of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Ann. Glaciol., 56, 1828, https://doi.org/10.3189/2015AoG69A909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skific, N., and J. Francis, 2012: Self-organizing maps: A powerful tool for the atmospheric sciences. Applications of Self-Organizing Maps, M. Johnsson, Ed., IntechOpen, 251268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S., R. Massom, D. Rind, and D. Martinson, 2012: Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophys. Res. Lett., 39, L06501, https://doi.org/10.1029/2012GL050874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., and D. Notz, 2018: Changing state of Arctic sea ice across all seasons. Environ. Res. Lett., 13, 103001, https://doi.org/10.1088/1748-9326/aade56.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. C. Serreze, M. M. Holland, J. E. Jay, J. Malanik, and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110, 10051027, https://doi.org/10.1007/s10584-011-0101-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res. Atmos., 119, 28642889, https://doi.org/10.1002/2013JD020316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., 2004: The El Niño–Southern Oscillation and Antarctica. Int. J. Climatol., 24, 131, https://doi.org/10.1002/joc.965.

  • Turner, J., and J. Overland, 2009: Contrasting climate changes in the two polar regions. Polar Res., 28, 146164, https://doi.org/10.1111/j.1751-8369.2009.00128.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Zhang, E. Watanabe, M. Ikeda, K. Mizobata, J. E. Walsh, X. Bai, and B. Wu, 2009: Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys. Res. Lett., 36, L05706, https://doi.org/10.1029/2008GL036706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., X. Zhang, Z. Guan, B. Sun, X. Yang, and C. Liu, 2015: An atmospheric origin of the multi-decadal bipolar seesaw. Sci. Rep., 5, 8909, https://doi.org/10.1038/srep08909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and S. Zhong, 2018: Changes in sea-surface temperature and atmospheric circulation patterns associated with reductions in Arctic sea ice cover in recent decades. Atmos. Chem. Phys., 18, 14 14914 159, https://doi.org/10.5194/acp-18-14149-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., S. Zhong, J. A. Winkler, M. Zhou, D. H. Lenschow, B. Li, X. Wang, and Q. Yang, 2017: Possible connections of the opposite trends in Arctic and Antarctic sea-ice cover. Sci. Rep., 7, 45804, https://doi.org/10.1038/srep45804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., S. Zhong, M. Zhou, and B. Sun, 2018: Antarctic summer sea ice trend in the context of high-latitude atmospheric circulation changes. J. Climate, 31, 39093920, https://doi.org/10.1175/JCLI-D-17-0739.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., S. Zhong, M. Zhou, D. H. Lenschow, and B. Sun, 2019: Revisiting the linkages between the variability of atmospheric circulations and Arctic melt-season sea ice cover at multiple time scales. J. Climate, 32, 14611482, https://doi.org/10.1175/JCLI-D-18-0301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X. J., and C. H. Li, 2008: Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J. Geophys. Res. Oceans, 113, C06S91, https://doi.org/10.1029/2006JC004067.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 607 0 0
Full Text Views 1256 756 182
PDF Downloads 517 139 7