The Maritime Continent Barrier Effect on the MJO Teleconnections during the Boreal Winter Seasons in the Northern Hemisphere

Yihao Zhou aKey Laboratory of Mesoscale Severe Weather (MOE), School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Yihao Zhou in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8784-6807
,
Shuguang Wang aKey Laboratory of Mesoscale Severe Weather (MOE), School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Shuguang Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1861-9285
,
Juan Fang aKey Laboratory of Mesoscale Severe Weather (MOE), School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Juan Fang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3099-0231
, and
Da Yang bCollege of Agricultural and Environmental Sciences, University of California Davis, Davis, California
cEarth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Da Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Maritime Continent disrupts eastward propagation of the Madden–Julian oscillation (MJO). This study surveys the impact of the disruption—often known as the barrier effect—on the MJO teleconnections. The MJO propagation may be broadly categorized based on whether the MJO precipitation crosses the Maritime Continent (MC) during extended boreal winter seasons: successfully propagating across the MC (MJO-C) or being blocked by the MC (MJO-B). Compositing atmospheric circulation upon these two categories reveals that precipitation anomalies of MJO-C are stronger and more coherent than those of MJO-B, while their phase speed and lifetime are comparable. MJO-C and MJO-B excite distinct extratropical responses due to their diabatic heating in the deep tropics. Midlatitude circulation displays stronger and long-lasting negative geopotential anomalies in the northern Pacific Ocean 5–14 days after phase 7–8 of MJO-C, but significantly weaker anomalies from MJO-B. The extratropical water vapor transport during MJO-B and MJO-C differs markedly after phase 2. The Pacific–North American (PNA) pattern and North Atlantic Oscillation (NAO) both show significant response after phase 6 of MJO-C as its precipitation anomaly over the tropical Pacific during this period is stronger, while MJO-B has little impact on both. Surface air temperatures (SAT) at high latitudes during MJO-B and MJO-C are also significantly different. SAT is weaker and delayed in MJO-B in comparison to MJO-C, likely due to different meridional eddy heat fluxes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Years of the Maritime Continent Special Collection.

Corresponding author: Shuguang Wang, wangsg@outlook.com

Abstract

The Maritime Continent disrupts eastward propagation of the Madden–Julian oscillation (MJO). This study surveys the impact of the disruption—often known as the barrier effect—on the MJO teleconnections. The MJO propagation may be broadly categorized based on whether the MJO precipitation crosses the Maritime Continent (MC) during extended boreal winter seasons: successfully propagating across the MC (MJO-C) or being blocked by the MC (MJO-B). Compositing atmospheric circulation upon these two categories reveals that precipitation anomalies of MJO-C are stronger and more coherent than those of MJO-B, while their phase speed and lifetime are comparable. MJO-C and MJO-B excite distinct extratropical responses due to their diabatic heating in the deep tropics. Midlatitude circulation displays stronger and long-lasting negative geopotential anomalies in the northern Pacific Ocean 5–14 days after phase 7–8 of MJO-C, but significantly weaker anomalies from MJO-B. The extratropical water vapor transport during MJO-B and MJO-C differs markedly after phase 2. The Pacific–North American (PNA) pattern and North Atlantic Oscillation (NAO) both show significant response after phase 6 of MJO-C as its precipitation anomaly over the tropical Pacific during this period is stronger, while MJO-B has little impact on both. Surface air temperatures (SAT) at high latitudes during MJO-B and MJO-C are also significantly different. SAT is weaker and delayed in MJO-B in comparison to MJO-C, likely due to different meridional eddy heat fluxes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Years of the Maritime Continent Special Collection.

Corresponding author: Shuguang Wang, wangsg@outlook.com

Supplementary Materials

    • Supplemental Materials (PDF 4.87 MB)
Save
  • Bao, M., and D. L. Hartmann, 2014: The response to MJO-like forcing in a nonlinear shallow-water model. Geophys. Res. Lett., 41, 13221328, https://doi.org/10.1002/2013GL057683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., C. R. Densmore, P. Ray, and E. R. Sanabia, 2021: Active and weakening MJO events in the Maritime Continent. Climate Dyn., 57, 157172, https://doi.org/10.1007/s00382-021-05699-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature, 455, 523527, https://doi.org/10.1038/nature07286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y.-L., C.-H. Sui, C.-P. Chang, and K.-C. Tseng, 2021: Effect of the MJO on East Asian winter rainfall as revealed by an SVD analysis. J. Climate, 34, 97299746, https://doi.org/10.1175/JCLI-D-20-0941.1.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropical–extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199, https://doi.org/10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., R. Nieto, M. Vázquez, and D. A. Lavers, 2014: Atmospheric rivers: A mini-review. Front. Earth Sci., 2, 2, https://doi.org/10.3389/feart.2014.00002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gloeckler, L. C., and P. E. Roundy, 2013: Modulation of the extratropical circulation by combined activity of the Madden–Julian oscillation and equatorial Rossby waves during boreal winter. Mon. Wea. Rev., 141, 13471357, https://doi.org/10.1175/MWR-D-12-00179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goss, M., and S. B. Feldstein, 2018: Testing the sensitivity of the extratropical response to the location, amplitude, and propagation speed of tropical convection. J. Atmos. Sci., 75, 639655, https://doi.org/10.1175/JAS-D-17-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and E. A. Barnes, 2016: The influence of the Madden–Julian oscillation on Northern Hemisphere winter blocking. J. Climate, 29, 45974616, https://doi.org/10.1175/JCLI-D-15-0502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and S.-W. Son, 2017: Madden–Julian oscillation Pacific teleconnections: The impact of the basic state and MJO representation in general circulation models. J. Climate, 30, 45674587, https://doi.org/10.1175/JCLI-D-16-0789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, https://doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hoskins, B. J., and P. D. Sardeshmukh, 1987: A diagnostic study of the dynamics of the Northern Hemisphere winter of 1985–86. Quart. J. Roy. Meteor. Soc., 113, 759778, https://doi.org/10.1002/qj.49711347705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., 1996: Global view of the intraseasonal oscillation during northern winter. J. Climate, 9, 23862406, https://doi.org/10.1175/1520-0442(1996)009<2386:GVOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., and M. Y. Lee, 2005: Topographic effects on the eastward propagation and initiation of the Madden–Julian oscillation. J. Climate, 18, 795809, https://doi.org/10.1175/JCLI-3292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, W., P. Liu, Q. Zhang, and B. He, 2019: Dominant patterns of winter-time intraseasonal surface air temperature over the CONUS in response to MJO convections. Climate Dyn., 53, 39173936, https://doi.org/10.1007/s00382-019-04760-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inness, P. M., and J. M. Slingo, 2006: The interaction of the Madden–Julian Oscillation with the Maritime Continent in a GCM. Quart. J. Roy. Meteor. Soc., 132, 16451667, https://doi.org/10.1256/qj.05.102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inness, P. M., J. M. Slingo, E. Guilyardi, and J. Cole, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16, 365382, https://doi.org/10.1175/1520-0442(2003)016<0365:SOTMJO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., B.-M. Kim, C.-H. Ho, and Y.-H. Noh, 2008: Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion. J. Climate, 21, 788801, https://doi.org/10.1175/2007JCLI1801.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, X., L. Chen, F. Ren, and C. Li, 2011: Impacts of the MJO on winter rainfall and circulation in China. Adv. Atmos. Sci., 28, 521533, https://doi.org/10.1007/s00376-010-9118-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2016: Large-scale precipitation tracking and the MJO over the Maritime Continent and Indo-Pacific warm pool. J. Geophys. Res. Atmos., 121, 87558776, https://doi.org/10.1002/2015JD024661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, https://doi.org/10.1175/MWR-D-13-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., H. Kim, and M. I. Lee, 2017: Why does the MJO detour the Maritime Continent during austral summer? Geophys. Res. Lett., 44, 25792587, https://doi.org/10.1002/2017GL072643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, R. W., S. J. Woolnough, A. J. Charlton‐Perez, and F. Vitart, 2019: ENSO modulation of MJO teleconnections to the North Atlantic and Europe. Geophys. Res. Lett., 46, 13 53513 545, https://doi.org/10.1029/2019GL084683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, N. Johnson, S. B. Feldstein, and D. Pollard, 2011: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367, https://doi.org/10.1175/2011JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., L. Wang, M. Peng, B. Wang, C. Zhang, W. Lau, and H.-C. Kuo, 2018: A paper on the tropical intraseasonal oscillation published in 1963 in a Chinese journal. Bull. Amer. Meteor. Soc., 99, 17651779, https://doi.org/10.1175/BAMS-D-17-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., and G. Brunet, 2018: Extratropical response to the MJO: Nonlinearity and sensitivity to the initial state. J. Atmos. Sci., 75, 219234, https://doi.org/10.1175/JAS-D-17-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380, https://doi.org/10.1175/2008JCLI2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and R. Mo, 2010: Impact of the Madden–Julian oscillation on wintertime precipitation in Canada. Mon. Wea. Rev., 138, 38223839, https://doi.org/10.1175/2010MWR3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., C. Zhang, R. Joyce, P.-p. Xie, and G. Chen, 2019: Possible role of the diurnal cycle in land convection in the barrier effect on the MJO by the Maritime Continent. Geophys. Res. Lett., 46, 30013011, https://doi.org/10.1029/2019GL081962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukens, K. E., S. B. Feldstein, C. Yoo, and S. Lee, 2017: The dynamics of the extratropical response to Madden–Julian oscillation convection. Quart. J. Roy. Meteor. Soc., 143, 10951106, https://doi.org/10.1002/qj.2993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, https://doi.org/10.1256/qj.02.123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., and M. Watanabe, 2008: The growth and triggering mechanisms of the PNA: A MJO–PNA coherence. J. Meteor. Soc. Japan, 86, 213236, https://doi.org/10.2151/jmsj.86.213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., K. MacRitchie, J. Asuma, and T. Melino, 2010: Modulation of the global atmospheric circulation by combined activity in the Madden–Julian oscillation and the El Niño–Southern Oscillation during boreal winter. J. Climate, 23, 40454059, https://doi.org/10.1175/2010JCLI3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357379, https://doi.org/10.1175/1520-0469(1990)047<0357:DCADSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and S.-W. Son, 2012: The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian oscillation during northern winter. J. Atmos. Sci., 69, 7996, https://doi.org/10.1175/2011JAS3686.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and H.-J. Lee, 2017: Mechanisms for a PNA-like teleconnection pattern in response to the MJO. J. Atmos. Sci., 74, 17671781, https://doi.org/10.1175/JAS-D-16-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stan, C., and V. Krishnamurthy, 2019: Intra-seasonal and seasonal variability of the Northern Hemisphere extra-tropics. Climate Dyn., 53, 48214839, https://doi.org/10.1007/s00382-019-04827-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stan, C., D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney, and C. Schumacher, 2017: Review of tropical–extratropical teleconnections on intraseasonal time scales. Rev. Geophys., 55, 902937, https://doi.org/10.1002/2016RG000538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, K.-C., E. A. Barnes, and E. D. Maloney, 2018: Prediction of the midlatitude response to strong Madden–Julian Oscillation events on S2S time scales. Geophys. Res. Lett., 45, 463470, https://doi.org/10.1002/2017GL075734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, K.-C., E. Maloney, and E. Barnes, 2019: The consistency of MJO teleconnection patterns: An explanation using linear Rossby wave theory. J. Climate, 32, 531548, https://doi.org/10.1175/JCLI-D-18-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, K.-C., N. C. Johnson, E. D. Maloney, E. A. Barnes, and S. B. Kapnick, 2021: Mapping large-scale climate variability to hydrological extremes: An application of the linear inverse model to subseasonal prediction. J. Climate, 34, 42074225, https://doi.org/10.1175/JCLI-D-20-0502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and N. A. Bond, 2004: The Madden–Julian Oscillation (MJO) and northern high latitude wintertime surface air temperatures. Geophys. Res. Lett., 31, L04104, https://doi.org/10.1029/2003GL018645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vitart, F., and F. Molteni, 2010: Simulation of the Madden–Julian Oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855, https://doi.org/10.1002/qj.623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., H. Kim, D. Kim, S. A. Henderson, C. Stan, and E. D. Maloney, 2020: MJO teleconnections over the PNA region in climate models. Part II: Impacts of the MJO and basic state. J. Climate, 33, 50815101, https://doi.org/10.1175/JCLI-D-19-0865.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., 2020: A precipitation-based index for tropical intraseasonal oscillations. J. Climate, 33, 805823, https://doi.org/10.1175/JCLI-D-19-0019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., D. Ma, A. H. Sobel, and M. K. Tippett, 2018: Propagation characteristics of BSISO indices. Geophys. Res. Lett., 45, 99349943, https://doi.org/10.1029/2018GL078321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, M. K. Tippett, and F. Vitart, 2019: Prediction and predictability of tropical intraseasonal convection: Seasonal dependence and the Maritime Continent prediction barrier. Climate Dyn., 52, 60156031, https://doi.org/10.1007/s00382-018-4492-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., 1983: Intraseasonal circulation and outgoing longwave radiation modes during Northern Hemisphere winter. Mon. Wea. Rev., 111, 18381858, https://doi.org/10.1175/1520-0493(1983)111<1838:ICAOLR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113, 941961, https://doi.org/10.1175/1520-0493(1985)113<0941:IDFOOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Y.-B., S.-J. Chen, I.-L. Zhang, and Y.-L. Huang, 1963: A preliminarily statistic and synoptic study about the basic currents over southeastern Asia and the initiation of typhoon (in Chinese). Acta Meteor. Sin., 33, 206217, https://doi.org/10.1007/s13351-018-8888-6.

    • Search Google Scholar
    • Export Citation
  • Yadav, P., and D. M. Straus, 2017: Circulation response to fast and slow MJO episodes. Mon. Wea. Rev., 145, 15771596, https://doi.org/10.1175/MWR-D-16-0352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Feldstein, and S. Lee, 2011: The impact of the Madden–Julian Oscillation trend on the Arctic amplification of surface air temperature during the 1979–2008 boreal winter. Geophys. Res. Lett., 38, L24804, https://doi.org/10.1029/2011GL049881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. B. Feldstein, 2012: Mechanisms of Arctic surface air temperature change in response to the Madden–Julian oscillation. J. Climate, 25, 57775790, https://doi.org/10.1175/JCLI-D-11-00566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., and M. Dong, 2004: Seasonality in the Madden–Julian oscillation. J. Climate, 17, 31693180, https://doi.org/10.1175/1520-0442(2004)017<3169:SITMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Ling, 2017: Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Climate, 30, 34393459, https://doi.org/10.1175/JCLI-D-16-0614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Á. F. Adames, B. Khouider, B. Wang, and D. Yang, 2020: Four theories of the Madden–Julian Oscillation. Rev. Geophys., 58, e2019RG000685, https://doi.org/10.1029/2019RG000685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, C., and E. K.-M. Chang, 2019: The role of MJO propagation, lifetime, and intensity on modulating the temporal evolution of the MJO extratropical response. J. Geophys. Res. Atmos., 124, 53525378, https://doi.org/10.1029/2019JD030258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, C., and E. K.-M. Chang, 2020: The role of extratropical background flow in modulating the MJO extratropical response. J. Climate, 33, 45134536, https://doi.org/10.1175/JCLI-D-19-0708.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., H. Kim, and D. E. Waliser, 2021: Atmospheric river lifecycle responses to the Madden–Julian oscillation. Geophys. Res. Lett., 48, e2020GL090983, https://doi.org/10.1029/2020GL090983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1204 1040 25
Full Text Views 316 275 13
PDF Downloads 332 280 9