Climate Change Impacts on Extreme Rainfall in Eastern Africa in a Convection-Permitting Climate Model

Sarah Chapman aSchool of Earth and Environment, University of Leeds, Leeds, West Yorkshire, United Kingdom

Search for other papers by Sarah Chapman in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3141-8616
,
James Bacon bMet Office Hadley Centre, Exeter, Devon, United Kingdom

Search for other papers by James Bacon in
Current site
Google Scholar
PubMed
Close
,
Cathryn E. Birch aSchool of Earth and Environment, University of Leeds, Leeds, West Yorkshire, United Kingdom

Search for other papers by Cathryn E. Birch in
Current site
Google Scholar
PubMed
Close
,
Edward Pope bMet Office Hadley Centre, Exeter, Devon, United Kingdom

Search for other papers by Edward Pope in
Current site
Google Scholar
PubMed
Close
,
John H. Marsham aSchool of Earth and Environment, University of Leeds, Leeds, West Yorkshire, United Kingdom

Search for other papers by John H. Marsham in
Current site
Google Scholar
PubMed
Close
,
Hellen Msemo aSchool of Earth and Environment, University of Leeds, Leeds, West Yorkshire, United Kingdom
cTanzania Meteorological Authority, Dar es Salaam, Tanzania

Search for other papers by Hellen Msemo in
Current site
Google Scholar
PubMed
Close
,
Edson Nkonde eZambia Meteorological Department, Lusaka, Zambia

Search for other papers by Edson Nkonde in
Current site
Google Scholar
PubMed
Close
,
Kenneth Sinachikupo eZambia Meteorological Department, Lusaka, Zambia

Search for other papers by Kenneth Sinachikupo in
Current site
Google Scholar
PubMed
Close
, and
Charles Vanya dDepartment of Climate Change and Meteorological Service, Ministry of Forestry and Natural Resources, Blantyre, Malawi

Search for other papers by Charles Vanya in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climate change is expected to increase the frequency and intensity of rainfall extremes. Understanding future changes in rainfall is necessary for adaptation planning. Eastern Africa is vulnerable to rainfall extremes because of low adaptive capacity and high future population growth. Convection-permitting climate models have been found to better represent moderate (yearly) rainfall extremes than parameterized convection models, but there is limited analysis of rare extremes that occur less frequently than once per year. These events often have the largest socioeconomic impacts. We use extreme value theory and regional frequency analysis to quantify rare rainfall extremes over East Africa in a convection-permitting climate model (CP4A). We compare the results with its parameterized counterpart (P25), the Coordinated Regional Climate Downscaling Experiment for the African region (CORDEX-Africa) ensemble, and observations to understand how the convection parameterization impacts the results. We find that CP4A better matches observations than the parameterized models. With climate change, we find the parameterized convection models have unrealistically high changes in the shape parameter of the extreme value distribution, which controls the tail behavior (i.e., the most extreme events), leading to large increases in return levels of events with a return period of >20 years. This suggests that parameterized convection models may not be suitable for looking at relative changes in rare rainfall events with climate change and that convection-permitting models should be preferred for this type of work. With the more realistic CP4A, RCP8.5 end-of-century climate change leads to 1-in-100-yr events becoming 1-in-23-yr events, which will necessitate serious adaptation efforts to avoid devastating socioeconomic impacts.

Significance Statement

We use a new, high-resolution climate model to examine how rare extreme rainfall events in East Africa might change in the future with climate change and compare the results with those from standard-resolution climate models. We find that the standard-resolution models have unrealistically large increases in rainfall for events that occur less frequently than every 20 years. The high-resolution model is more realistic and is required to illustrate possible future changes in rare rainfall extremes. Extreme events will become more common with climate change, and in the more realistic model we show that a 1-in-100-yr event may become a 1-in-23-yr event by the end of the century if greenhouse gas emissions are not significantly reduced.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sarah Chapman, earsch@leeds.ac.uk

Abstract

Climate change is expected to increase the frequency and intensity of rainfall extremes. Understanding future changes in rainfall is necessary for adaptation planning. Eastern Africa is vulnerable to rainfall extremes because of low adaptive capacity and high future population growth. Convection-permitting climate models have been found to better represent moderate (yearly) rainfall extremes than parameterized convection models, but there is limited analysis of rare extremes that occur less frequently than once per year. These events often have the largest socioeconomic impacts. We use extreme value theory and regional frequency analysis to quantify rare rainfall extremes over East Africa in a convection-permitting climate model (CP4A). We compare the results with its parameterized counterpart (P25), the Coordinated Regional Climate Downscaling Experiment for the African region (CORDEX-Africa) ensemble, and observations to understand how the convection parameterization impacts the results. We find that CP4A better matches observations than the parameterized models. With climate change, we find the parameterized convection models have unrealistically high changes in the shape parameter of the extreme value distribution, which controls the tail behavior (i.e., the most extreme events), leading to large increases in return levels of events with a return period of >20 years. This suggests that parameterized convection models may not be suitable for looking at relative changes in rare rainfall events with climate change and that convection-permitting models should be preferred for this type of work. With the more realistic CP4A, RCP8.5 end-of-century climate change leads to 1-in-100-yr events becoming 1-in-23-yr events, which will necessitate serious adaptation efforts to avoid devastating socioeconomic impacts.

Significance Statement

We use a new, high-resolution climate model to examine how rare extreme rainfall events in East Africa might change in the future with climate change and compare the results with those from standard-resolution climate models. We find that the standard-resolution models have unrealistically large increases in rainfall for events that occur less frequently than every 20 years. The high-resolution model is more realistic and is required to illustrate possible future changes in rare rainfall extremes. Extreme events will become more common with climate change, and in the more realistic model we show that a 1-in-100-yr event may become a 1-in-23-yr event by the end of the century if greenhouse gas emissions are not significantly reduced.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sarah Chapman, earsch@leeds.ac.uk

Supplementary Materials

    • Supplemental Materials (PDF 781 KB)
Save
  • Acero, F. J., J. A. García, and M. C. Gallego, 2011: Peaks-over-threshold study of trends in extreme rainfall over the Iberian Peninsula. J. Climate, 24, 10891105, https://doi.org/10.1175/2010JCLI3627.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ageet, S., A. H. Fink, M. Maranan, J. E. Diem, J. Hartter, A. L. Ssali, and P. Ayabagabo, 2022: Validation of satellite rainfall estimates over equatorial East Africa. J. Hydrometeor., 23, 129151, https://doi.org/10.1175/JHM-D-21-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., 2016: Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Wea. Climate Extremes, 11, 416, https://doi.org/10.1016/j.wace.2015.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badr, H. S., B. F. Zaitchik, and A. K. Dezfuli, 2015: A tool for hierarchical climate regionalization. Earth Sci. Inf., 8, 949958, https://doi.org/10.1007/s12145-015-0221-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Schmidli, and C. Schär, 2015: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett., 42, 11651172, https://doi.org/10.1002/2014GL062588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban, N., J. Rajczak, J. Schmidli, and C. Schär, 2020: Analysis of alpine precipitation extremes using generalized extreme value theory in convection-resolving climate simulations. Climate Dyn., 55, 6 175, https://doi.org/10.1007/s00382-018-4339-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berthou, S., E. J. Kendon, D. P. Rowell, M. J. Roberts, S. Tucker, and R. A. Stratton, 2019: Larger future intensification of rainfall in the West African Sahel in a convection-permitting model. Geophys. Res. Lett., 46, 13 29913 307, https://doi.org/10.1029/2019GL083544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, E., J. Slingo, and K. R. Sperber, 2003: An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Wea. Rev., 131, 7494, https://doi.org/10.1175/1520-0493(2003)131<0074:AOSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cannon, A. J., and S. Innocenti, 2019: Projected intensification of sub-daily and daily rainfall extremes in convection-permitting climate model simulations over North America: Implications for future intensity-duration-frequency curves. Nat. Hazards Earth Syst. Sci., 19, 421440, https://doi.org/10.5194/nhess-19-421-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattani, E., A. Merino, and V. Levizzani, 2016: Evaluation of monthly satellite-derived precipitation products over East Africa. J. Hydrometeor., 17, 25552573, https://doi.org/10.1175/JHM-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamani, R., D. Monkam, and Z. Yepdo Djomou, 2018: Return times and return levels of July–September extreme rainfall over the major climatic sub-regions in Sahel. Atmos. Res., 212, 7790, https://doi.org/10.1016/j.atmosres.2018.04.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. C., E. J. Kendon, H. J. Fowler, S. Blenkinsop, N. M. Roberts, and C. A. T. Ferro, 2014: The value of high-resolution Met Office regional climate models in the simulation of multihourly precipitation extremes. J. Climate, 27, 61556174, https://doi.org/10.1175/JCLI-D-13-00723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, S. C., E. J. Kendon, N. M. Roberts, H. J. Fowler, and S. Blenkinsop, 2016: Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat. Geosci., 9, 2428, https://doi.org/10.1038/ngeo2596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., C. E. Birch, E. Pope, S. Sallu, C. Bradshaw, J. Davie, and J. H. Marsham, 2020: Impact of climate change on crop suitability in sub-Saharan Africa in parameterized and convection-permitting regional climate models. Environ. Res. Lett., 15, 094086, https://doi.org/10.1088/1748-9326/ab9daf.

    • Search Google Scholar
    • Export Citation
  • Cioffi, F., F. Conticello, and U. Lall, 2016: Projecting changes in Tanzania rainfall for the 21st century. Int. J. Climatol., 36, 42974314, https://doi.org/10.1002/joc.4632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Climate Prediction Center, 2020: Cold & warm episodes by season. NOAA/National Weather Service, accessed 24 February 2021, https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.

    • Crossref
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag, 209 pp.

    • Crossref
    • Export Citation
  • De Paola, F., M. Giugni, M. E. Topa, and E. Bucchignani, 2014: Intensity-duration-frequency (IDF) rainfall curves, for data series and climate projection in African cities. SpringerPlus, 3, 133, https://doi.org/10.1186/2193-1801-3-133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinku, T., C. Funk, P. Peterson, R. Maidment, T. Tadesse, H. Gadain, and P. Ceccato, 2018: Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quart. J. Roy. Meteor. Soc., 144 (Suppl. 1), 292312, https://doi.org/10.1002/qj.3244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Do Lago, C., E. Mendiondo, F. Olivera, and M. Giocomoni, 2019: Application of a disaggregation method for the generation of climate changed intensity-duration-frequency curves for predicting future extreme rainfall impacts on transportation infrastructure. MATEC Web Conf., 271, 04002, https://doi.org/10.1051/matecconf/201927104002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dosio, A., R. G. Jones, C. Jack, C. Lennard, G. Nikulin, and B. Hewitson, 2019: What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Climate Dyn., 53, 58335858, https://doi.org/10.1007/s00382-019-04900-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finney, D. L., and Coauthors, 2019: Implications of improved representation of convection for the East Africa water budget using a convection-permitting model. J. Climate, 32, 21092129, https://doi.org/10.1175/JCLI-D-18-0387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finney, D. L., J. H. Marsham, D. P. Rowell, E. J. Kendon, S. O. Tucker, R. A. Stratton, and L. S. Jackson, 2020: Effects of explicit convection on future projections of mesoscale circulations, rainfall, and rainfall extremes over eastern Africa. J. Climate, 33, 27012718, https://doi.org/10.1175/JCLI-D-19-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontolan, M., A. C. F. Xavier, H. R. Pereira, and G. C. Blain, 2019: Using climate change models to assess the probability of weather extremes events: A local scale study based on the generalized extreme value distribution. Bragantia, 78, 146157, https://doi.org/10.1590/1678-4499.2018144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., and M. Ekstrom, 2009: Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes. Int. J. Climatol., 29, 385416, https://doi.org/10.1002/joc.1827.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., D. Cooley, S. R. Sain, and M. Thurston, 2010: Detecting change in UK extreme precipitation using results from the climateprediction.net BBC climate change experiment. Extremes, 13, 241267, https://doi.org/10.1007/s10687-010-0101-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frei, C., R. Schöll, S. Fukutome, J. Schmidli, and P. L. Vidale, 2006: Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. J. Geophys. Res., 111, D06105, https://doi.org/10.1029/2005JD005965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C., and Coauthors, 2015: The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Aristizabal, A., E. Bucchignani, E. Palazzi, D. D’Onofrio, P. Gasparini, and W. Marzocchi, 2015: Analysis of non-stationary climate-related extreme events considering climate change scenarios: An application for multi-hazard assessment in the Dar es Salaam region, Tanzania. Nat. Hazards, 75, 289320, https://doi.org/10.1007/s11069-014-1324-z.

    • Search Google Scholar
    • Export Citation
  • Gilleland, E., and R. W. Katz, 2006: Analyzing seasonal to interannual extreme weather and climate variability with the extremes toolkit. 18th Conf. on Climate Variability and Change, Atlanta, GA, Amer. Meteor. Soc., P2.15, https://ams.confex.com/ams/pdfpapers/101830.pdf.

    • Crossref
    • Export Citation
  • Golroudbary, V. R., Y. Zeng, C. M. Mannaerts, and Z. Su, 2016: Attributing seasonal variation of daily extreme precipitation events across the Netherlands. Wea. Climate Extremes, 14, 5666, https://doi.org/10.1016/j.wace.2016.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groupe de Recherche en Hydrologie Statistique, 1996: Inter-comparison of regional flood frequency procedures for Canadian rivers. J. Hydrol., 186, 85103, https://doi.org/10.1016/S0022-1694(96)03043-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, F., K. H. Cook, and E. K. Vizy, 2019: Changes in intense rainfall events and dry periods across Africa in the twenty-first century. Climate Dyn., 53, 27572777, https://doi.org/10.1007/s00382-019-04653-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanel, M., T. A. Buishand, and C. A. T. Ferro, 2009: A nonstationary index flood model for precipitation extremes in transient regional climate model simulations. J. Geophys. Res., 114, D15107, https://doi.org/10.1029/2009JD011712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, L., C. Funk, and P. Peterson, 2019: Identifying changing precipitation extremes in sub-Saharan Africa with gauge and satellite products. Environ. Res. Lett., 14, 085007, https://doi.org/10.1088/1748-9326/ab2cae.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosking, J. R. M., and J. R. Wallis, 1997: Regional Frequency Analysis: An Approach Based on L-moments. Cambridge University Press, 224 pp.

    • Crossref
    • Export Citation
  • Huffman, G. J., 2019: The Transition in Multi-Satellite Products from TRMM to GPM (TMPA to IMERG). NASA Algorithm Theoretical Basis Doc., 5 pp., https://gpm.nasa.gov/sites/default/files/2020-10/TMPA-to-IMERG_transition_201002.pdf.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Islam, M. A., 2018: Statistical comparison of satellite-retrieved precipitation products with rain gauge observations over Bangladesh. Int. J. Remote Sens., 39, 29062936, https://doi.org/10.1080/01431161.2018.1433890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, L. S., D. L. Finney, E. J. Kendon, J. H. Marsham, D. J. Parker, R. A. Stratton, L. Tomassini, and S. Tucker, 2020: The effect of explicit convection on couplings between rainfall, humidity, and ascent over Africa under climate change. J. Climate, 33, 83158337, https://doi.org/10.1175/JCLI-D-19-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jalbert, J., A. C. Favre, C. Bélisle, and J. F. Angers, 2017: A spatiotemporal model for extreme precipitation simulated by a climate model, with an application to assessing changes in return levels over North America. J. Roy. Stat. Soc., 66, 941962, https://doi.org/10.1111/rssc.12212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., F. Giorgi, and G. Asrar, 2011: The Coordinated Regional Downscaling Experiment: CORDEX, an international downscaling link to CMIP5. CLIVAR Exchanges, No. 56, International CLIVAR Project Office, Southampton, United Kingdom, 34–39, https://www.clivar.org/sites/default/files/documents/Exchanges56.pdf.

    • Crossref
    • Export Citation
  • Kendon, E. J., and Coauthors, 2017: Do convection-permitting regional climate models improve projections of future precipitation change? Bull. Amer. Meteor. Soc., 98, 7993, https://doi.org/10.1175/BAMS-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., R. A. Stratton, S. Tucker, J. H. Marsham, S. Berthou, D. P. Rowell, and C. A. Senior, 2019: Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nat. Commun., 10, 1794, https://doi.org/10.1038/s41467-019-09776-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 14191444, https://doi.org/10.1175/JCLI4066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., G. M. Flato, X. Zhang, N. P. Gillett, F. Zwiers, and K. J. Anderson, 2018: Risks from climate extremes change differently from 1.5°C to 2.0°C depending on rarity. Earth’s Future, 6, 704715, https://doi.org/10.1002/2018EF000813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kijazi, A. L., and C. J. C. Reason, 2005: Relationships between intraseasonal rainfall variability of coastal Tanzania and ENSO. Theor. Appl. Climatol., 82, 153176, https://doi.org/10.1007/s00704-005-0129-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimani, M. W., J. C. B. Hoedjes, and Z. Su, 2017: An assessment of satellite-derived rainfall products relative to ground observations over East Africa. Remote Sens., 9, 430, https://doi.org/10.3390/rs9050430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, C., and Coauthors, 2021: Combining CMIP data with a regional convection-permitting model and observations to project extreme rainfall under climate change. Environ. Res. Lett., 16, 104023, https://doi.org/10.1088/1748-9326/ac26f1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knote, C., G. Heinemann, and B. Rockel, 2010: Changes in weather extremes: Assessment of return values using high resolution climate simulations at convection-resolving scale. Meteor. Z., 19, 1123, https://doi.org/10.1127/0941-2948/2010/0424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mannshardt-Shamseldin, E. C., R. L. Smith, S. R. Sain, L. O. Mearns, and D. Cooley, 2010: Downscaling extremes: A comparison of extreme value distributions in point-source and gridded precipitation data. Ann. Appl. Stat., 4, 484502, https://doi.org/10.1214/09-AOAS287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, L., E. Coppola, M. B. Sylla, F. Giorgi, and C. Piani, 2011: Regional climate model simulation of projected 21st century climate change over an all-Africa domain: Comparison analysis of nested and driving model results. J. Geophys. Res., 116, D15111, https://doi.org/10.1029/2010JD015068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martins, E. S., and J. R. Stedinger, 2000: Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour. Res., 36, 737744, https://doi.org/10.1029/1999WR900330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misiani, H. O., D. L. Finney, Z. T. Segele, J. H. Marsham, A. Tadege, G. Artan, and Z. Atheru, 2020: Circulation patterns associated with current and future rainfall over Ethiopia and South Sudan from a convection-permitting model. Atmosphere, 11, 1352, https://doi.org/10.3390/atmos11121352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittal, N., and Coauthors, 2021: Tailored climate projections to assess site-specific vulnerability of tea production. Climate Risk Manage., 34, 100367, https://doi.org/10.1016/j.crm.2021.100367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monsieurs, E., O. Dewitte, and A. Demoulin, 2019: A susceptibility-based rainfall threshold approach for landslide occurrence. Nat. Hazards Earth Syst. Sci., 19, 775789, https://doi.org/10.5194/nhess-19-775-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muthoni, F. K., V. O. Odongo, J. Ochieng, E. M. Mugalavai, S. K. Mourice, I. Hoesche-Zeledon, M. Mwila, and M. Bekunda, 2019: Long-term spatial-temporal trends and variability of rainfall over eastern and southern Africa. Theor. Appl. Climatol., 137, 18691882, https://doi.org/10.1007/s00704-018-2712-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onyutha, C., 2020: Analyses of rainfall extremes in East Africa based on observations from rain gauges and climate change simulations by CORDEX RCMs. Climate Dyn., 54, 48414864, https://doi.org/10.1007/s00382-020-05264-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overeem, A., T. A. Buishand, and I. Holleman, 2009: Extreme rainfall analysis and estimation of depth-duration-frequency curves using weather radar. Water Resour. Res., 45, W10424, https://doi.org/10.1029/2009WR007869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papalexiou, S. M., and D. Koutsoyiannis, 2013: Battle of extreme value distributions: A global survey on extreme daily rainfall. Water Resour. Res., 49, 187201, https://doi.org/10.1029/2012WR012557.

    • Search Google Scholar
    • Export Citation
  • Pinto, I., C. Lennard, M. Tadross, B. Hewitson, A. Dosio, G. Nikulin, H. J. Panitz, and M. E. Shongwe, 2016: Evaluation and projections of extreme precipitation over southern Africa from two CORDEX models. Climatic Change, 135, 655668, https://doi.org/10.1007/s10584-015-1573-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Search Google Scholar
    • Export Citation
  • Ragulina, G., and T. Reitan, 2017: Generalized extreme value shape parameter and its nature for extreme precipitation using long time series and the Bayesian approach. Hydrol. Sci. J., 62, 863879, https://doi.org/10.1080/02626667.2016.1260134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team, 2013: A language and environment for statistical computing. R Foundation for Statistical Computing, https://www.r-project.org/.

    • Crossref
    • Export Citation
  • Rowell, D. P., and R. Chadwick, 2018: Causes of the uncertainty in projections of tropical terrestrial rainfall change: East Africa. J. Climate, 31, 59775995, https://doi.org/10.1175/JCLI-D-17-0830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scarrott, C., and A. MacDonald, 2012: A review of extreme value threshold estimation and uncertainty quantification. Revstat Stat. J., 10, 3360, http://dx.doi.org/10.57805/revstat.v10i1.110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schliep, E. M., D. Cooley, S. R. Sain, and J. A. Hoeting, 2010: A comparison study of extreme precipitation from six different regional climate models via spatial hierarchical modeling. Extremes, 13, 219239, https://doi.org/10.1007/s10687-009-0098-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semmler, T., and D. Jacob, 2004: Modeling extreme precipitation events—A climate change simulation for Europe. Global Planet. Change, 44, 119127, https://doi.org/10.1016/j.gloplacha.2004.06.008.

    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and Coauthors, 2021: Convection-permitting regional climate change simulations for understanding future climate and informing decision-making in Africa. Bull. Amer. Meteor. Soc., 102, E1206E1223, https://doi.org/10.1175/BAMS-D-20-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiferaw, A., T. Tadesse, C. Rowe, and R. Oglesby, 2018: Precipitation extremes in dynamically downscaled climate scenarios over the greater horn of Africa. Atmosphere, 9, 112, https://doi.org/10.3390/atmos9030112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shongwe, M. E., G. J. Van Oldenborgh, B. J. J. M. Van Den Hurk, B. De Boer, C. A. S. Coelho, and M. K. Van Aalst, 2009: Projected changes in mean and extreme precipitation in Africa under global warming. Part I: Southern Africa. J. Climate, 22, 38193837, https://doi.org/10.1175/2009JCLI2317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sieck, L. C., S. J. Burges, and M. Steiner, 2007: Challenges in obtaining reliable measurements of point rainfall. Water Resour. Res., 43, W01420, https://doi.org/10.1029/2005WR004519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, A., and J. Tawn, 2004: Bayesian inference for extremes: Accounting for the three extremal types. Extremes, 7, 291307, https://doi.org/10.1007/s10687-004-3479-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stratton, R. A., and Coauthors, 2018: A pan-African convection-permitting regional climate simulation with the Met Office Unified Model: CP4-Africa. J. Climate, 31, 34853508, https://doi.org/10.1175/JCLI-D-17-0503.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sylla, M. B., F. Giorgi, E. Coppola, and L. Mariotti, 2013: Uncertainties in daily rainfall over Africa: Assessment of gridded observation products and evaluation of a regional climate model simulation. Int. J. Climatol., 33, 18051817, https://doi.org/10.1002/joc.3551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarhule, A., 2005: Damaging rainfall and flooding: The other Sahel hazards. Climatic Change, 72, 355377, https://doi.org/10.1007/s10584-005-6792-4.

  • Thomassen, E. D., E. J. Kendon, H. J. D. Sørup, S. C. Chan, P. L. Langen, O. B. Christensen, and K. Arnbjerg-Nielsen, 2021: Differences in representation of extreme precipitation events in two high resolution models. Climate Dyn., 57, 30293043, https://doi.org/10.1007/s00382-021-05854-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, B., M. Wehner, D. Cooley, T. O’Brien, and H. Krishnan, 2019: An evaluation of the consistency of extremes in gridded precipitation data sets. Climate Dyn., 52, 66516670, https://doi.org/10.1007/s00382-018-4537-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Search Google Scholar
    • Export Citation
  • Wainwright, C. M., D. L. Finney, M. Kilavi, E. Black, and J. H. Marsham, 2020: Extreme rainfall in East Africa, October 2019–January 2020 and context under future climate change. Weather, 76, 2631, https://doi.org/10.1002/wea.3824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., B. Trewin, Y. Feng, and D. Jones, 2013: Historical changes in Australian temperature extremes as inferred from extreme value distribution analysis. Geophys. Res. Lett., 40, 573578, https://doi.org/10.1002/grl.50132.

    • Search Google Scholar
    • Export Citation
  • Wilson, P. S., and R. Toumi, 2005: A fundamental probability distribution for heavy rainfall. Geophys. Res. Lett., 32, L14812, https://doi.org/10.1029/2005GL022465.

    • Search Google Scholar
    • Export Citation
  • World Bank, 2019: Disaster risk profile: Malawi. Global Facility for Disaster Reduction and Recovery Doc., 13 pp., https://www.gfdrr.org/sites/default/files/publication/malawi_low.pdf.

  • Wright, D. B., C. D. Bosma, and T. Lopez-Cantu, 2019: U.S. hydrologic design standards insufficient due to large increases in frequency of rainfall extremes. Geophys. Res. Lett., 46, 81448153, https://doi.org/10.1029/2019GL083235.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1370 782 53
Full Text Views 465 304 31
PDF Downloads 493 327 27