• Bacmeister, J. T., K. A. Reed, C. Hannay, P. Lawrence, S. Bates, J. E. Truesdale, N. Rosenbloom, and M. Levy, 2018: Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Climatic Change, 146, 547560, https://doi.org/10.1007/s10584-016-1750-x.

    • Search Google Scholar
    • Export Citation
  • Balaguru, K., L. R. Leung, J. Lu, and G. R. Foltz, 2016: A meridional dipole in premonsoon Bay of Bengal tropical cyclone activity induced by ENSO. J. Geophys. Res. Atmos., 121, 69546968, https://doi.org/10.1002/2016JD024936.

    • Search Google Scholar
    • Export Citation
  • Balaguru, K., G. R. Foltz, L. R. Leung, J. Kaplan, W. Xu, N. Reul, and B. Chapron, 2020: Pronounced impact of salinity on rapidly intensifying tropical cyclones. Bull. Amer. Meteor. Soc., 101, E1497E1511, https://doi.org/10.1175/BAMS-D-19-0303.1.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458, https://doi.org/10.1126/science.1180568.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.-J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539561, https://doi.org/10.1111/j.1600-0870.2007.00251.x.

    • Search Google Scholar
    • Export Citation
  • Bueti, M. R., I. Ginis, L. M. Rothstein, and S. M. Griffies, 2014: Tropical cyclone–induced thermocline warming and its regional and global impacts. J. Climate, 27, 69786999, https://doi.org/10.1175/JCLI-D-14-00152.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. A. Chepurin, and L. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 69676983, https://doi.org/10.1175/JCLI-D-18-0149.1.

    • Search Google Scholar
    • Export Citation
  • Chen, D., and Coauthors, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339345, https://doi.org/10.1038/ngeo2399.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., J. Zhu, and R. L. Sriver, 2015: Global representation of tropical cyclone-induced short-term ocean thermal changes using Argo data. Ocean Sci., 11, 719741, https://doi.org/10.5194/os-11-719-2015.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. E. Trenberth, J. T. Fasullo, M. Mayer, M. Balmaseda, and J. Zhu, 2019: Evolution of ocean heat content related to ENSO. J. Climate, 32, 35293556, https://doi.org/10.1175/JCLI-D-18-0607.1.

    • Search Google Scholar
    • Export Citation
  • Dare, R. A., and J. L. McBride, 2011: Sea surface temperature response to tropical cyclones. Mon. Wea. Rev., 139, 37983808, https://doi.org/10.1175/MWR-D-10-05019.1.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett., 34, L15609, https://doi.org/10.1029/2007GL030160.

    • Search Google Scholar
    • Export Citation
  • Desbruyères, D. G., S. G. Purkey, E. L. McDonagh, G. C. Johnson, and B. A. King, 2016: Deep and abyssal ocean warming from 35 years of repeat hydrography. Geophys. Res. Lett., 43, 10 35610 365, https://doi.org/10.1002/2016GL070413.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2001: Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106, 14 77114 781, https://doi.org/10.1029/2000JD900641.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, https://doi.org/10.1038/nature03906.

    • Search Google Scholar
    • Export Citation
  • Fan, K., X. Wang, G. R. Foltz, and K. Balaguru, 2019: Meridional oscillation in genesis location of tropical cyclones in the postmonsoon Bay of Bengal. Climate Dyn., 53, 21032118, https://doi.org/10.1007/s00382-019-04794-1.

    • Search Google Scholar
    • Export Citation
  • Fan, K., X. Wang, and Z. He, 2020: Control of salinity stratification on recent increase in tropical cyclone intensification rates over the postmonsoon Bay of Bengal. Environ. Res. Lett., 15, 094028, https://doi.org/10.1088/1748-9326/ab9690.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., C. M. Brierley, and K. Emanuel, 2010: Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature, 463, 10661070, https://doi.org/10.1038/nature08831.

    • Search Google Scholar
    • Export Citation
  • Felton, C. S., B. Subrahmanyam, and V. S. N. Murty, 2013: ENSO-modulated cyclogenesis over the Bay of Bengal. J. Climate, 26, 98069818, https://doi.org/10.1175/JCLI-D-13-00134.1.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and G. S. Young, 2007: The interannual variability of tropical cyclones. Mon. Wea. Rev., 135, 35873598, https://doi.org/10.1175/MWR3435.1.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Girishkumar, M. S., and M. Ravichandran, 2012: The influences of ENSO on tropical cyclone activity in the Bay of Bengal during October–December. J. Geophys. Res., 117, C02033, https://doi.org/10.1029/2011JC007417.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., J.-H. Kim, J.-H. Jeong, H.-S. Kim, and D. Chen, 2006: Variation of tropical cyclone activity in the South Indian Ocean: El Niño–Southern Oscillation and Madden-Julian Oscillation effects. J. Geophys. Res., 111, D22101, https://doi.org/10.1029/2006JD007289.

    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., and R. Ferrari, 2009: Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophys. Res. Lett., 36, L06604, https://doi.org/10.1029/2008GL036796.

    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., R. Ferrari, and T. A. Mooring, 2010: Seasonal versus permanent thermocline warming by tropical cyclones. Geophys. Res. Lett., 37, L03602, https://doi.org/10.1029/2009GL041808.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T., and Coauthors, 2020: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc., 101, E303E322, https://doi.org/10.1175/BAMS-D-18-0194.1.

    • Search Google Scholar
    • Export Citation
  • Kuleshov, Y., L. Qi, R. Fawcett, and D. Jones, 2008: On tropical cyclone activity in the Southern Hemisphere: Trends and the ENSO connection. Geophys. Res. Lett., 35, L14S08, https://doi.org/10.1029/2007GL032983.

    • Search Google Scholar
    • Export Citation
  • Li, H., and R. L. Sriver, 2018: Impact of tropical cyclones on the global ocean: Results from multidecadal global ocean simulations isolating tropical cyclone forcing. J. Climate, 31, 87618784, https://doi.org/10.1175/JCLI-D-18-0221.1.

    • Search Google Scholar
    • Export Citation
  • Li, H., R. L. Sriver, and M. Goes, 2016: Modeled sensitivity of the Northwestern Pacific upper-ocean response to tropical cyclones in a fully coupled climate model with varying ocean grid resolution. J. Geophys. Res. Oceans, 121, 586601, https://doi.org/10.1002/2015JC011226.

    • Search Google Scholar
    • Export Citation
  • Lian, T., D. Chen, Y. Tang, and Q. Wu, 2014: Effects of westerly wind bursts on El Niño: A new perspective. Geophys. Res. Lett., 41, 35223527, https://doi.org/10.1002/2014GL059989.

    • Search Google Scholar
    • Export Citation
  • Lian, T., D. Chen, Y. Tang, X. Liu, J. Feng, and L. Zhou, 2018: Linkage between westerly wind bursts and tropical cyclones. Geophys. Res. Lett., 45, 11 43111 438, https://doi.org/10.1029/2018GL079745.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, https://doi.org/10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., J. M. Lyman, G. C. Johnson, R. P. Allan, D. R. Doelling, T. Wong, B. J. Soden, and G. L. Stephens, 2012: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci., 5, 110113, https://doi.org/10.1038/ngeo1375.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., G. C. Johnson, T. J. Thorsen, J. M. Lyman, F. G. Rose, and S. Kato, 2021: Satellite and ocean data reveal marked increase in Earth’s heating rate. Geophys. Res. Lett., 48, e2021GL093047, https://doi.org/10.1029/2021GL093047.

    • Search Google Scholar
    • Export Citation
  • Manucharyan, G. E., C. M. Brierley, and A. V. Fedorov, 2011: Climate impacts of intermittent upper ocean mixing induced by tropical cyclones. J. Geophys. Res., 116, C11038, https://doi.org/10.1029/2011JC007295.

    • Search Google Scholar
    • Export Citation
  • Mei, W., and C. Pasquero, 2012: Restratification of the upper ocean after the passage of a tropical cyclone: A numerical study. J. Phys. Oceanogr., 42, 13771401, https://doi.org/10.1175/JPO-D-11-0209.1.

    • Search Google Scholar
    • Export Citation
  • Mei, W., and C. Pasquero, 2013: Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J. Climate, 26, 37453765, https://doi.org/10.1175/JCLI-D-12-00125.1.

    • Search Google Scholar
    • Export Citation
  • Mei, W., F. Primeau, J. C. McWilliams, and C. Pasquero, 2013: Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean. Proc. Natl. Acad. Sci. USA, 110, 15 20715 210, https://doi.org/10.1073/pnas.1306753110.

    • Search Google Scholar
    • Export Citation
  • Park, J. J., Y.-O. Kwon, and J. F. Price, 2011: Argo array observation of ocean heat content changes induced by tropical cyclones in the North Pacific. J. Geophys. Res., 116, C12025, https://doi.org/10.1029/2011JC007165.

    • Search Google Scholar
    • Export Citation
  • Pasquero, C., and K. Emanuel, 2008: Tropical cyclones and transient upper-ocean warming. J. Climate, 21, 149162, https://doi.org/10.1175/2007JCLI1550.1.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260, https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., J. Morzel, and P. P. Niiler, 2008: Warming of SST in the cool wake of a moving hurricane. J. Geophys. Res., 113, C07010, https://doi.org/10.1029/2007JC004393.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Santoso, A., M. J. Mcphaden, and W. Cai, 2017: The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys., 55, 10791129, https://doi.org/10.1002/2017RG000560.

    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., and Coauthors, 2011: Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J. Climate, 24, 43684384, https://doi.org/10.1175/2011JCLI4104.1.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., and M. Huber, 2006: Low frequency variability in globally integrated tropical cyclone power dissipation. Geophys. Res. Lett., 33, L11705, https://doi.org/10.1029/2006GL026167.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., and M. Huber, 2007: Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577580, https://doi.org/10.1038/nature05785.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., and M. Huber, 2010: Modeled sensitivity of upper thermocline properties to tropical cyclone winds and possible feedbacks on the Hadley circulation. Geophys. Res. Lett., 37, L08704, https://doi.org/10.1029/2010GL042836.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., M. Huber, and J. Nusbaumer, 2008: Investigating tropical cyclone-climate feedbacks using the TRMM microwave imager and the quick scatterometer. Geochem. Geophys. Geosyst., 9, Q09V11, https://doi.org/10.1029/2007GC001842.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, G. Madec, J. Vialard, G. Samson, N. C. Jourdain, C. E. Menkes, and S. Jullien, 2012a: Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J. Geophys. Res., 117, C02020, https://doi.org/10.1029/2011JC007396.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, J. Vialard, G. Madec, N. C. Jourdain, and S. Masson, 2012b: Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones. J. Geophys. Res., 117, C05023, https://doi.org/10.1029/2011JC007705.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., G. Madec, M. Lengaigne, J. Vialard, and A. Koch-Larrouy, 2013: Influence of tropical cyclones on sea surface temperature seasonal cycle and ocean heat transport. Climate Dyn., 41, 20192038, https://doi.org/10.1007/s00382-012-1556-0.

    • Search Google Scholar
    • Export Citation
  • Wada, A., T. Uehara, and S. Ishizaki, 2014: Typhoon-induced sea surface cooling during the 2011 and 2012 typhoon seasons: Observational evidence and numerical investigations of the sea surface cooling effect using typhoon simulations. Prog. Earth Planet. Sci., 1, 11, https://doi.org/10.1186/2197-4284-1-11.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., and Coauthors, 2019: Tropical cyclones act to intensify El Niño. Nat. Commun., 10, 3793, https://doi.org/10.1038/s41467-019-11720-w.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847850, https://doi.org/10.1126/science.288.5467.847.

    • Search Google Scholar
    • Export Citation
  • Werner, A., A. M. Maharaj, and N. J. Holbrook, 2012: A new method for extracting the ENSO-independent Indian Ocean dipole: Application to Australian region tropical cyclone counts. Climate Dyn., 38, 25032511, https://doi.org/10.1007/s00382-011-1133-y.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Y. Lin, D. R. Chavas, and W. Mei, 2019: Tropical cyclone cold wake size and its applications to power dissipation and ocean heat uptake estimates. Geophys. Res. Lett., 46, 10 17710 185, https://doi.org/10.1029/2019GL083783.

    • Search Google Scholar
    • Export Citation
  • Zuo, H., M. A. Balmaseda, S. Tietsche, K. Mogensen, and M. Mayer, 2019: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment. Ocean Sci., 15, 779808, https://doi.org/10.5194/os-15-779-2019.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 440 440 41
Full Text Views 93 93 8
PDF Downloads 125 125 14

Spatiotemporal Variability of Tropical Cyclone–Induced Ocean Heat Uptake and Its Effect on Ocean Heat Content

Kaigui FanaKey Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, China

Search for other papers by Kaigui Fan in
Current site
Google Scholar
PubMed
Close
,
Xidong WangaKey Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, China
bSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Xidong Wang in
Current site
Google Scholar
PubMed
Close
,
Juan LiucBeijing Institute of Applied Meteorology, Beijing, China

Search for other papers by Juan Liu in
Current site
Google Scholar
PubMed
Close
, and
Caixia ShaoaKey Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, China

Search for other papers by Caixia Shao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical cyclones (TCs) can pump heat downward into the ocean through inducing intense vertical mixing. Many efforts have been made to estimate the TC-induced ocean heat uptake (OHU), but spatiotemporal variability of TC-induced OHU remains unclear. This study estimates the TC-induced OHU, which takes into account the heat loss at the air–sea interface during TC passage compared to previous studies and investigates the spatiotemporal variability of TC-induced OHU and its potential impacts on ocean heat content (OHC) during the period 1985–2018. It is found that the spatial distribution of OHU is inhomogeneous, with the largest OHU occurring in the northwest Pacific, and category 3–5 TCs contribute approximately 51% of the total global OHU per year. The annually accumulated TC-induced OHUs in the regional basins exhibit pronounced interannual variability, which is closely related to the TC power dissipation index (PDI). By decomposing PDI into TC intensity, frequency, and duration, we find that the TC characteristics influencing OHU variability vary by basin. Correlation analyses suggest that the interannual variations of OHUs are linked to El Niño–Southern Oscillation (ENSO). In addition, the OHU might have the potential to influence OHC variability, especially in the equatorial eastern Pacific where there are significant positive correlations between the OHU and OHC with lags of 2–6 months. This has an important implication that TC-induced OHU might have potential effects on ENSO evolution.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xidong Wang, xidong_wang@hhu.edu.cn

Abstract

Tropical cyclones (TCs) can pump heat downward into the ocean through inducing intense vertical mixing. Many efforts have been made to estimate the TC-induced ocean heat uptake (OHU), but spatiotemporal variability of TC-induced OHU remains unclear. This study estimates the TC-induced OHU, which takes into account the heat loss at the air–sea interface during TC passage compared to previous studies and investigates the spatiotemporal variability of TC-induced OHU and its potential impacts on ocean heat content (OHC) during the period 1985–2018. It is found that the spatial distribution of OHU is inhomogeneous, with the largest OHU occurring in the northwest Pacific, and category 3–5 TCs contribute approximately 51% of the total global OHU per year. The annually accumulated TC-induced OHUs in the regional basins exhibit pronounced interannual variability, which is closely related to the TC power dissipation index (PDI). By decomposing PDI into TC intensity, frequency, and duration, we find that the TC characteristics influencing OHU variability vary by basin. Correlation analyses suggest that the interannual variations of OHUs are linked to El Niño–Southern Oscillation (ENSO). In addition, the OHU might have the potential to influence OHC variability, especially in the equatorial eastern Pacific where there are significant positive correlations between the OHU and OHC with lags of 2–6 months. This has an important implication that TC-induced OHU might have potential effects on ENSO evolution.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xidong Wang, xidong_wang@hhu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.03 MB)
Save