Destinations and Pathways of the Indonesian Throughflow Water in the Indian Ocean

Yaru Guo aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Yaru Guo in
Current site
Google Scholar
PubMed
Close
,
Yuanlong Li aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Yuanlong Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7239-5756
, and
Fan Wang aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Fan Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Passage of the Indonesian Throughflow (ITF) water through the Indian Ocean constitutes an essential section of the upper limb of the global ocean conveyor belt. Although existing studies have identified a major exit of the ITF water to the Atlantic Ocean through the Agulhas Current system, our knowledge regarding other possible destinations and primary pathways remains limited. This study applies the Connectivity Modeling System (CMS) particle tracking algorithm to seven model-based ocean current datasets. The results reveal a robust return path of the ITF water to the Pacific Ocean. The partition ratio between the Atlantic and Pacific routes is 1.60 ± 0.54 to 1, with the uncertainty representing interdataset spread. The average transit time across the Indian Ocean is 10–20 years to the Atlantic and 15–30 years to the Pacific. The “transit velocity” is devised to describe the three-dimensional pathways in a quantitative sense. Its distribution demonstrates that the recirculation structures in the southwestern subtropical Indian Ocean favor the exit to the Atlantic, while the Antarctic Circumpolar Current in the Southern Ocean serves as the primary corridor to the Pacific. Our analysis also suggests the vital impact of vertical motions. In idealized tracing experiments inhibiting vertical currents and turbulent mixing, more water tends to linger over the Indian Ocean or return to the Pacific. Turbulence mixing also contributes to vertical motions but only slightly affects the destinations and pathways of ITF water.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanlong Li, liyuanlong@qdio.ac.cn

Abstract

Passage of the Indonesian Throughflow (ITF) water through the Indian Ocean constitutes an essential section of the upper limb of the global ocean conveyor belt. Although existing studies have identified a major exit of the ITF water to the Atlantic Ocean through the Agulhas Current system, our knowledge regarding other possible destinations and primary pathways remains limited. This study applies the Connectivity Modeling System (CMS) particle tracking algorithm to seven model-based ocean current datasets. The results reveal a robust return path of the ITF water to the Pacific Ocean. The partition ratio between the Atlantic and Pacific routes is 1.60 ± 0.54 to 1, with the uncertainty representing interdataset spread. The average transit time across the Indian Ocean is 10–20 years to the Atlantic and 15–30 years to the Pacific. The “transit velocity” is devised to describe the three-dimensional pathways in a quantitative sense. Its distribution demonstrates that the recirculation structures in the southwestern subtropical Indian Ocean favor the exit to the Atlantic, while the Antarctic Circumpolar Current in the Southern Ocean serves as the primary corridor to the Pacific. Our analysis also suggests the vital impact of vertical motions. In idealized tracing experiments inhibiting vertical currents and turbulent mixing, more water tends to linger over the Indian Ocean or return to the Pacific. Turbulence mixing also contributes to vertical motions but only slightly affects the destinations and pathways of ITF water.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanlong Li, liyuanlong@qdio.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.0148 MB)
Save
  • Aguiar-González, B., L. Ponsoni, H. Ridderinkhof, H. M. van Aken, W. P. M. de Ruijter, and L. R. M. Maas, 2016: Seasonal variation of the South Indian tropical gyre. Deep-Sea Res. I, 110, 123140, https://doi.org/10.1016/j.dsr.2016.02.004.

    • Search Google Scholar
    • Export Citation
  • Ansorge, I. J., S. Speich, J. R. E. Lutjeharms, G. J. Goni, C. J. Rautenbach, P. W. Froneman, M. Rouault, and S. L. Garzoli, 2005: Monitoring the oceanic flow between Africa and Antarctica: Report of the first GoodHope cruise. S. Afr. J. Sci., 101, 2935.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., A. Vidard, and D. L. T. Anderson, 2008: The ECMWF ocean analysis system: ORA-S3. Mon. Wea. Rev., 136, 30183034, https://doi.org/10.1175/2008MWR2433.1.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., and H. L. Bryden, 1999: The velocity and vorticity structure of the Agulhas Current at 32°S. J. Geophys. Res., 104, 51515176, https://doi.org/10.1029/1998JC900056.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., W. P. M. de Ruijter, A. Biastoch, R. Zahn, and SCOR/WCRP/IAPSO Working Group 136, 2011: On the role of the Agulhas system in ocean circulation and climate. Nature, 472, 429436, https://doi.org/10.1038/nature09983.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., C. W. Böning, F. U. Schwarzkop, and J. R. E. Lutjeharms, 2009: Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature, 462, 495498, https://doi.org/10.1038/nature08519.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and S. Raynaud, 1997: Kinematics of the Pacific equatorial undercurrent: An Eulerian and Lagrangian approach from GCM results. J. Phys. Oceanogr., 27, 10381053, https://doi.org/10.1175/1520-0485(1997)027<1038:KOTPEU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brickman, D., and L. Taylor, 2007: Optimized biophysical model. Fisheries, 16, 448458.

  • Broecker, W. S., 1992: The great ocean conveyor. AIP Conf. Proc., 247, 129161, https://doi.org/10.1063/1.41925.

  • Bryden, H. L., L. M. Beal, and L. M. Duncan, 2005: Structure and transport of the Agulhas Current and its temporal variability. J. Oceanogr., 61, 479492, https://doi.org/10.1007/s10872-005-0057-8.

    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Han, Y. Li, D. Wang, and M. J. McPhaden, 2015: Seasonal-to-interannual time-scale dynamics of the equatorial undercurrent in the Indian Ocean. J. Phys. Oceanogr., 45, 15321553, https://doi.org/10.1175/JPO-D-14-0225.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Han, Y. Shu, Y. Li, D. Wang, and Q. Xie, 2016a: The role of equatorial undercurrent in sustaining the eastern Indian Ocean upwelling. Geophys. Res. Lett., 43, 64446451, https://doi.org/10.1002/2016GL069433.

    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Han, Y. Li, and D. Wang, 2016b: Interannual variability of equatorial Eastern Indian Ocean upwelling: Local versus remote forcing. J. Phys. Oceanogr., 46, 789807, https://doi.org/10.1175/JPO-D-15-0117.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, Y., D. Putrasahan, L. Beal, and B. Kirtman, 2016: Quantifying Agulhas leakage in a high-resolution climate model. J. Climate, 29, 68816892, https://doi.org/10.1175/JCLI-D-15-0568.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The 20th century reanalysis project., Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Cresswell, G. R., and J. L. Peterson, 1993: The Leeuwin Current south of Western Australia. Aust. J. Mar. Freshwater Res., 44, 285303, https://doi.org/10.1071/MF9930285.

    • Search Google Scholar
    • Export Citation
  • de Ruijter, W. P. M., A. Biastoch, S. S. Drijfhout, J. R. E. Lutjeharms, R. P. Matano, T. Pichevin, P. J. van Leeuwen, and W. Weijer, 1999: Indian–Atlantic interocean exchange: Dynamics, estimation and impact. J. Geophys. Res., 104, 20 88520 910, https://doi.org/10.1029/1998JC900099.

    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., M. E. Maltrud, S. E. Wijffels, J. A. Church, and M. Tomczak, 2007: Simulated Lagrangian pathways between the Leeuwin Current System and the upper-ocean circulation of the southeast Indian Ocean. Deep-Sea Res. II, 54, 797817, https://doi.org/10.1016/j.dsr2.2006.10.003.

    • Search Google Scholar
    • Export Citation
  • Durgadoo, J. V., S. Rühs, A. Biastoch, and C. W. B. Böning, 2017: Indian Ocean sources of Agulhas leakage. J. Geophys. Res. Oceans, 122, 34813499, https://doi.org/10.1002/2016JC012676.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and F. Huang, 2005: On the interannual variability of the Indonesian Throughflow and its linkage with ENSO. J. Climate, 18, 14351444, https://doi.org/10.1175/JCLI3322.1.

    • Search Google Scholar
    • Export Citation
  • Feng, M., Y. Li, and G. Meyers, 2004: Multidecadal variations of Fremantle sea level: Footprint of climate variability in the tropical Pacific. Geophys. Res. Lett., 31, L16302, https://doi.org/10.1029/2004GL019947.

    • Search Google Scholar
    • Export Citation
  • Feng, M., S. Wijffels, S. Godfrey, and G. Meyers, 2005: Do eddies play a role in the momentum balance of the Leeuwin current? J. Phys. Oceanogr., 35, 964975, https://doi.org/10.1175/JPO2730.1.

    • Search Google Scholar
    • Export Citation
  • Feng, M., H. H. Hendon, S.-P. Xie, A. G. Marshall, A. Schiller, Y. Kosaka, N. Caputi, and A. Pearce, 2015: Decadal increase in Ningaloo Niño since the late 1990s. Geophys. Res. Lett., 42, 104112, https://doi.org/10.1002/2014GL062509.

    • Search Google Scholar
    • Export Citation
  • Feng, M., X. Zhang, B. Sloyan, and M. Chamberlain, 2017: Contribution of the deep ocean to the centennial changes of the Indonesian Throughflow. Geophys. Res. Lett., 44, 28592867, https://doi.org/10.1002/2017GL072577.

    • Search Google Scholar
    • Export Citation
  • Feron, R. C. V., W. P. M. De Ruijter, and D. Oskam, 1992: Ring shedding in the Agulhas Current System. J. Geophys. Res., 97, 94679477, https://doi.org/10.1029/92JC00736.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning Ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Search Google Scholar
    • Export Citation
  • Garternicht, U., and F. Schott, 1997: Heat fluxes of the Indian Ocean from a global eddy-resolving model. J. Geophys. Res., 102, 21 14721 159, https://doi.org/10.1029/97JC01585.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91, 50375046, https://doi.org/10.1029/JC091iC04p05037.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., J. R. E. Lutjeharms, and M. L. Gründlingh, 1987: Stratification and circulation at the Agulhas retroflection. Deep-Sea Res., 34A, 565599, https://doi.org/10.1016/0198-0149(87)90006-9.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., R. D. Susanto, and A. Ffield, 1999: Throughflow within Makassar Strait. Geophys. Res. Lett., 26, 33253328, https://doi.org/10.1029/1999GL002340.

    • Search Google Scholar
    • Export Citation
  • Griffiths, R. W., and A. F. Pearce, 1985: Satellite images of an unstable warm eddy derived from the Leeuwin current. Deep-Sea Res., 32A, 13711380, https://doi.org/10.1016/0198-0149(85)90053-6.

    • Search Google Scholar
    • Export Citation
  • Guo, Y., Y. Li, F. Wang, Y. Wei, and Z. Rong, 2020: Processes controlling sea surface temperature variability of Ningaloo Niño. J. Climate, 33, 43694389, https://doi.org/10.1175/JCLI-D-19-0698.1.

    • Search Google Scholar
    • Export Citation
  • Guo, Y., Y. Li, F. Wang, and Y. Wei, 2021: Ocean salinity aspects of the Ningaloo Niño. J. Climate, 34, 61416161, https://doi.org/10.1175/JCLI-D-20-0890.1.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., E. J. D. Campos, S. Drijfhout, W. Hazeleger, and C. Severijns, 2011: Impacts of interruption of the Agulhas leakage on the tropical Atlantic in coupled ocean-atmosphere simulations. Climate Dyn., 36, 9891003, https://doi.org/10.1007/s00382-009-0692-7.

    • Search Google Scholar
    • Export Citation
  • Haines, M. A., R. A. Fine, M. E. Luther, and Z. Ji, 1999: Particle trajectories in an Indian Ocean model and sensitivity to seasonal forcing. J. Phys. Oceanogr., 29, 584598, https://doi.org/10.1175/1520-0485(1999)029<0584:PTIAIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Han, W., D. Stammer, G. A. Meehl, A. Hu, F. Sienz, and L. Zhang, 2018: Multi-decadal trend and decadal variability of the regional sea level over the Indian Ocean since the 1960s: Roles of climate modes and external forcing. Climate, 6, 51, https://doi.org/10.3390/cli6020051.

    • Search Google Scholar
    • Export Citation
  • Hautala, S. L., J. Sprintall, J. T. Potemra, J. C. Chong, W. Pandoe, N. Bray, and A. G. Ilahude, 2001: Velocity structure and transport of the Indonesian Throughflow in the major straits restricting flow into the Indian Ocean. J. Geophys. Res., 106, 19 52719 546, https://doi.org/10.1029/2000JC000577.

    • Search Google Scholar
    • Export Citation
  • Hirschi, J. J.-M., and Coauthors, 2020: The Atlantic meridional overturning circulation in high-resolution models. J. Geophys. Res. Oceans, 125, e2019JC015522, https://doi.org/10.1029/2019JC015522.

    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., and J. S. Godfrey, 1993: The role of Indonesian Throughflow in a global ocean GCM. J. Phys. Oceanogr., 23, 10571086, https://doi.org/10.1175/1520-0485(1993)023<1057:TROITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, S., and J. Sprintall, 2016: Interannual variability of the Indonesian Throughflow: The salinity effect. J. Geophys. Res. Oceans, 121, 25962615, https://doi.org/10.1002/2015JC011495.

    • Search Google Scholar
    • Export Citation
  • Iskandar, I., S. Rao, and T. Tozuka, 2009: Chlorophyll‐a bloom along the southern coasts of Java and Sumatra during 2006. Int. J. Remote Sens., 30, 663671, https://doi.org/10.1080/01431160802372309.

    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., and D. T. Georgi, 1977: Observations on the southwest Indian/Antarctic Ocean. Deep-Sea Res., 24 (Suppl.), 4384.

  • Kalnay, E., and Coauthors, 1996: NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kataoka, T., T. Tozuka, S. Behera, and T. Yamagata, 2014: On the Ningaloo Niño/Niña. Climate Dyn., 43, 14631482, https://doi.org/10.1007/s00382-013-1961-z.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., 2015: Evaluation of the GECCO2 ocean synthesis: Transports of volume, heat and freshwater in the Atlantic. Quart. J. Roy. Meteor. Soc., 141, 166181, https://doi.org/10.1002/qj.2347.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci., 8, 445449, https://doi.org/10.1038/ngeo2438.

    • Search Google Scholar
    • Export Citation
  • Lee, T., 2004: Decadal weakening of the shallow overturning circulation in the South Indian Ocean. Geophys. Res. Lett., 31, L18305, https://doi.org/10.1029/2004GL020884.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and Coauthors, 2010: Consistency and fidelity of Indonesian-Throughflow total volume transport estimated by 14 ocean data assimilation products. Dyn. Atmos. Oceans, 50, 201223, https://doi.org/10.1016/j.dynatmoce.2009.12.004.

    • Search Google Scholar
    • Export Citation
  • Lellouche, J.-M., and Coauthors, 2018: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real‐time 1/12° high‐resolution system. Ocean Sci., 14, 10931126, https://doi.org/10.5194/os-14-1093-2018.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and W. Han, 2015: Decadal sea level variations in the Indian Ocean investigated with HYCOM: Roles of climate modes, ocean internal variability, and stochastic wind forcing. J. Climate, 28, 91439165, https://doi.org/10.1175/JCLI-D-15-0252.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, A. Hu, G. A. Meehl, and F. Wang, 2018: Multidecadal changes of the upper Indian Ocean heat content during 1965–2016. J. Climate, 31, 78637884, https://doi.org/10.1175/JCLI-D-18-0116.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, F. Wang, L. Zhang, and J. Duan, 2020: Vertical structure of the upper Indian Ocean thermal variability. J. Climate, 33, 72337253, https://doi.org/10.1175/JCLI-D-19-0851.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Guo, Y. Zhu, S. Kido, L. Zhang, and F. Wang, 2022: Variability of heat content and eddy kinetic energy in the southeast Indian Ocean: Roles of the Indonesian Throughflow and local wind forcing. J. Phys. Oceanogr., 52, 27892806, https://doi.org/10.1175/JPO-D-22-0051.1.

    • Search Google Scholar
    • Export Citation
  • Liao, F., X. Liang, Y. Li, and M. Spall, 2022: Hidden upwelling systems associated with major western boundary currents. J. Geophys. Res. Oceans, 127, e2021JC017649, https://doi.org/10.1029/2021JC017649.

    • Search Google Scholar
    • Export Citation
  • Liu, Q.-Y., M. Feng, D. Wang, and S. Wijffels, 2015: Interannual variability of the Indonesian Throughflow transport: A revisit based on 30 year expendable bathythermograph data. J. Geophys. Res. Oceans, 120, 82708282, https://doi.org/10.1002/2015JC011351.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., T. Yamagata, and J. P. McCreary, 1996: Pacific low-latitude western boundary currents and the Indonesian Throughflow. J. Geophys. Res., 101, 12 20912 216, https://doi.org/10.1029/96JC01204.

    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., 2006: The Agulhas Current. Springer, 330 pp.

  • Lutjeharms, J. R. E., and R. C. van Ballegooyen, 1988: The retroflection of the Agulhas Current. J. Phys. Oceanogr., 18, 15701583, https://doi.org/10.1175/1520-0485(1988)018<1570:TROTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., and I. J. Ansorge, 2001: The Agulhas Return Current. J. Mar. Syst., 30, 115138, https://doi.org/10.1016/S0924-7963(01)00041-0.

    • Search Google Scholar
    • Export Citation
  • Makarim, S., J. Sprintall, Z. Liu, W. Yu, A. Santoso, X.-H. Yan, and R. D. Susanto, 2019: Previously unidentified Indonesian Throughflow pathways and freshening in the Indian Ocean during recent decades. Sci. Rep., 9, 7364, https://doi.org/10.1038/s41598-019-43841-z.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., T. Miyama, R. Furue, T. Jensen, H.-W. Kang, B. Bang, and T. Qu, 2007: Interactions between the Indonesian Throughflow and circulations in the Indian and Pacific Oceans. Prog. Oceanogr., 75, 70114, https://doi.org/10.1016/j.pocean.2007.05.004.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., and Coauthors, 2005: NASA supercomputer improves prospects for ocean climate research. Eos, Trans. Amer. Geophys. Union, 86, 8996, https://doi.org/10.1029/2005EO090002.

    • Search Google Scholar
    • Export Citation
  • Menezes, V. V., H. E. Phillips, A. Schiller, C. M. Domingues, and N. L. Bindoff, 2013: Salinity dominance on the Indian Ocean Eastern Gyral current. Geophys. Res. Lett., 40, 57165721, https://doi.org/10.1002/2013GL057887.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., 1996: Variation of Indonesian Throughflow and the El Niño-Southern Oscillation. J. Geophys. Res., 101, 12 25512 263, https://doi.org/10.1029/95JC03729.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., R. J. Bailey, and A. P. Worby, 1995: Geostrophic transport of Indonesian Throughflow. Deep-Sea Res. I, 42, 11631174, https://doi.org/10.1016/0967-0637(95)00037-7.

    • Search Google Scholar
    • Export Citation
  • Miyama, T., J. P. McCreary Jr., T. G. Jensen, J. Loschnigg, S. Godfrey, and A. Ishida, 2003: Structure and dynamics of the Indian Ocean cross-equatorial cell. Deep-Sea Res. II, 50, 20232047, https://doi.org/10.1016/S0967-0645(03)00044-4.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth, and W. D. Nowlin, 1995: On the meridional extent and fronts of the Antarctic circumpolar current. Deep-Sea Res. I, 42, 641673, https://doi.org/10.1016/0967-0637(95)00021-W.

    • Search Google Scholar
    • Export Citation
  • Palastanga, V., P. J. van Leeuwen, M. W. Schouten, and W. P. M. de Ruijter, 2007: Flow structure and variability in the subtropical Indian Ocean: Instability of the South Indian Ocean Countercurrent. J. Geophys. Res., 112, C01001, https://doi.org/10.1029/2005JC003395.

    • Search Google Scholar
    • Export Citation
  • Paris, C. B., J. Helgers, E. van Sebille, and A. Srinivasan, 2013: Connectivity modeling system: A probabilistic modeling tool for the multi-scale tracking of biotic and abiotic variability in the ocean. Environ. Modell. Software, 42, 4754, https://doi.org/10.1016/j.envsoft.2012.12.006.

    • Search Google Scholar
    • Export Citation
  • Pearce, A. F., and R. W. Griffiths, 1991: The mesoscale structure of the Leeuwin Current: A comparison of laboratory models and satellite imagery. J. Geophys. Res., 96, 16 73916 757, https://doi.org/10.1029/91JC01712.

    • Search Google Scholar
    • Export Citation
  • Pearce, A. F., and M. Feng, 2013: The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst., 111–112, 139156, https://doi.org/10.1016/j.jmarsys.2012.10.009.

    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., R. Lukas, and G. T. Mitchum, 1997: Large-scale estimation of transport from the Pacific to the Indian Ocean. J. Geophys. Res., 102, 27 79527 812, https://doi.org/10.1029/97JC01719.

    • Search Google Scholar
    • Export Citation
  • Qin, X., E. van Sebille, and A. Sen Gupta, 2014: Quantification of errors induced by temporal resolution on Lagrangian particles in an eddy-resolving model. Ocean Modell., 76, 2030, https://doi.org/10.1016/j.ocemod.2014.02.002.

    • Search Google Scholar
    • Export Citation
  • Qu, T., and G. Meyers, 2005: Seasonal characteristics of circulation in the southeastern tropical Indian Ocean. J. Phys. Oceanogr., 35, 255267, https://doi.org/10.1175/JPO-2682.1.

    • Search Google Scholar
    • Export Citation
  • Richardson, P. L., 2007: Agulhas leakage into the Atlantic estimated with subsurface floats and surface drifters. Deep-Sea Res. I, 54, 13611389, https://doi.org/10.1016/j.dsr.2007.04.010.

    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., and S. A. Condie, 2004: The 5500-km-long boundary flow off western and southern Australia. J. Geophys. Res., 109, C04017, https://doi.org/10.1029/2003JC001921.

    • Search Google Scholar
    • Export Citation
  • Rochford, D. J., 1986: Seasonal changes in the distribution of Leeuwin current waters off southern Australia. Aust. J. Mar. Freshwater Res., 37 (1), 110, https://doi.org/10.1071/MF9860001.

    • Search Google Scholar
    • Export Citation
  • Rossi, V., M. Feng, C. Pattiaratchi, M. Roughan, and A. M. Waite, 2013: On the factors influencing the development of sporadic upwelling in the Leeuwin Current system. J. Geophys. Res. Oceans, 118, 36083621, https://doi.org/10.1002/jgrc.20242.

    • Search Google Scholar
    • Export Citation
  • Rühs, S., J. V. Durgadoo, E. Behrens, and A. Biastoch, 2013: Advective timescales and pathways of Agulhas leakage. Geophys. Res. Lett., 40, 39974000, https://doi.org/10.1002/grl.50782.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Santoso, A., M. H. England, J. B. Kajtar, and W. J. Cai, 2022: Indonesian Throughflow variability and linkage to ENSO and IOD in an ensemble of CMIP5 models. J. Climate, 35, 31613178, https://doi.org/10.1175/JCLI-D-21-0485.1.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., J. S. Godfrey, P. C. McIntosh, G. Meyers, and S. E. Wijffels, 1998: Seasonal near-surface dynamics and thermodynamics of the Indian Ocean and Indonesian Throughflow in a global general circulation model. J. Phys. Oceanogr., 28, 22882312, https://doi.org/10.1175/1520-0485(1998)028<2288:SNSDAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schott, A. F., and J. P. McCreary, 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51 (1), 1123, https://doi.org/10.1016/S0079-6611(01)00083-0.

    • Search Google Scholar
    • Export Citation
  • Schott, A. F., M. Dengler, and R. Schoenefeldt, 2002: The shallow overturning circulation of the Indian Ocean. Prog. Oceanogr., 53, 57103, https://doi.org/10.1016/S0079-6611(02)00039-3.

    • Search Google Scholar
    • Export Citation
  • Schwarzkopf, F. U., and C. W. Böning, 2011: Contribution of Pacific wind stress to multi-decadal variations in upper-ocean heat content and sea level in the tropical south Indian Ocean. Geophys. Res. Lett., 38, L12602, https://doi.org/10.1029/2011GL047651.

    • Search Google Scholar
    • Export Citation
  • Siedler, G., M. Rouault, and J. R. E. Lutjeharms, 2006: Structure and origin of the subtropical South Indian Ocean countercurrent. Geophys. Res. Lett., 33, L24609, https://doi.org/10.1029/2006GL027399.

    • Search Google Scholar
    • Export Citation
  • Simon, M. H., K. L. Arthur, I. R. Hall, F. J. C. Peeters, B. R. Loveday, S. Barker, M. Ziegler, and R. Zahn, 2013: Millennial-scale Agulhas Current variability and its implications for salt-leakage through the Indian–Atlantic Ocean gateway. Earth Planet. Sci. Lett., 383, 101112, https://doi.org/10.1016/j.epsl.2013.09.035.

    • Search Google Scholar
    • Export Citation
  • Smith, R. L., A. Huyer, J. S. Godfrey, and J. A. Church, 1991: The Leeuwin Current off western Australia. J. Phys. Oceanogr., 21, 323345, https://doi.org/10.1175/1520-0485(1991)021<0323:TLCOWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Song, Q., A. L. Gordon, and M. Visbeck, 2004: Spreading of Indonesian Throughflow in the Indian Ocean. J. Phys. Oceanogr., 34, 772792, https://doi.org/10.1175/1520-0485(2004)034<0772:SOTITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Speich, S., B. Blanke, and W. Cai, 2007: Atlantic meridional overturning circulation and the Southern Hemisphere Supergyre. Geophys. Res. Lett., 34, L23614, https://doi.org/10.1029/2007GL031583.

    • Search Google Scholar
    • Export Citation
  • Stramma, L., and J. R. E. Lutjeharms, 1997: The flow field of the subtropical gyre of the South Indian Ocean. J. Geophys. Res., 102, 55135530, https://doi.org/10.1029/96JC03455.

    • Search Google Scholar
    • Export Citation
  • Swart, S., S. Speich, I. J. Ansorge, G. J. Goni, S. Gladyshev, and J. Lutjeharms, 2008: Transport and variability of the Antarctic Circumpolar Current south of Africa. J. Geophys. Res., 113, C09014, https://doi.org/10.1029/2007JC004223.

    • Search Google Scholar
    • Export Citation
  • Valsala, K. V., and M. Ikeda, 2007: Pathways and effects of the Indonesian Throughflow water in the Indian Ocean using particle trajectory and tracers in an OGCM. J. Climate, 20, 29943017, https://doi.org/10.1175/JCLI4167.1.

    • Search Google Scholar
    • Export Citation
  • Valsala, V., S. Maksyutov, and R. Murtugudde, 2010: Possible interannual to interdecadal variabilities of the Indonesian Throughflow water pathways in the Indian Ocean. J. Geophys. Res., 115, C10016, https://doi.org/10.1029/2009JC005735.

    • Search Google Scholar
    • Export Citation
  • van Ballegooyen, R. C., M. L. Gründlingh, and J. R. E. Lutjeharms, 1994: Eddy fluxes of heat and salt from the southwest Indian Ocean into the southeast Atlantic Ocean: A case study. J. Geophys. Res., 99, 14 05314 070, https://doi.org/10.1029/94JC00383.

    • Search Google Scholar
    • Export Citation
  • van Sebille, E., M. H. England, J. D. Zika, and B. M. Sloyan, 2012: Tasman leakage in a fine-resolution ocean model. Geophys. Res. Lett., 39, L06601, https://doi.org/10.1029/2012GL051004.

    • Search Google Scholar
    • Export Citation
  • van Sebille, E., J. Sprintall, F. U. Schwarzkopf, A. Sen Gupta, A. Santoso, M. H. England, A. Biastoch, and C. W. Böning, 2014: Pacific-to-Indian Ocean connectivity: Tasman leakage, Indonesian Throughflow, and the role of ENSO. J. Geophys. Res. Oceans, 119, 13651382, https://doi.org/10.1002/2013JC009525.

    • Search Google Scholar
    • Export Citation
  • van Sebille, E., and Coauthors, 2018: Lagrangian Ocean analysis: Fundamentals and practices., 121, 4975, Ocean Modell., https://doi.org/10.1016/j.ocemod.2017.11.008.

    • Search Google Scholar
    • Export Citation
  • Vranes, K., and A. L. Gordon, 2005: Comparison of Indonesian Throughflow transport observations, Makassar Strait to eastern Indian Ocean. Geophys. Res. Lett., 32, L10606, https://doi.org/10.1029/2004GL022158.

    • Search Google Scholar