The Impacts of Combined SAM and ENSO on Seasonal Antarctic Sea Ice Changes

Jinfei Wang aSchool of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Jinfei Wang in
Current site
Google Scholar
PubMed
Close
,
Hao Luo aSchool of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Hao Luo in
Current site
Google Scholar
PubMed
Close
,
Lejiang Yu bMNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China

Search for other papers by Lejiang Yu in
Current site
Google Scholar
PubMed
Close
,
Xuewei Li aSchool of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Xuewei Li in
Current site
Google Scholar
PubMed
Close
,
Paul R. Holland cBritish Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Paul R. Holland in
Current site
Google Scholar
PubMed
Close
, and
Qinghua Yang aSchool of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Qinghua Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Both the Southern Annular Mode (SAM) and El Niño–Southern Oscillation (ENSO) are critical factors contributing to Antarctic sea ice variability on interannual time scales. However, their joint effects on sea ice are complex and remain unclear for each austral season. In this study, satellite sea ice concentration (SIC) observations and atmospheric reanalysis data are utilized to assess the impacts of combined SAM and ENSO on seasonal Antarctic sea ice changes. The joint SAM–ENSO impacts on southern high latitudes are principally controlled by the strength and position of the wave activity and associated atmospheric circulation anomalies affected by their interactions. In-phase events (La Niña/positive SAM and El Niño/negative SAM) are characterized with an SIC dipole located in the Weddell/Bellingshausen Seas and Amundsen/Ross Seas, while out-of-phase events (El Niño/positive SAM and La Niña/negative SAM) experience significant SIC anomalies in the Indian Ocean and western Pacific Ocean. Sea ice budget analyses are conducted to separate the dynamic and thermodynamic contributions inducing the sea ice intensification anomalies. The results show that in-phase intensification anomalies also display a pattern similar to the SIC dipole and are mainly driven by the direct thermodynamic forcing at the ice edge and thermodynamic responses to meridional sea ice drift in the inner pack, especially in autumn and winter. Dynamic processes caused by zonal sea ice drift also play an important role during out-of-phase conditions in addition to the same mechanisms during in-phase conditions.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hao Luo, luohao25@mail.sysu.edu.cn

Abstract

Both the Southern Annular Mode (SAM) and El Niño–Southern Oscillation (ENSO) are critical factors contributing to Antarctic sea ice variability on interannual time scales. However, their joint effects on sea ice are complex and remain unclear for each austral season. In this study, satellite sea ice concentration (SIC) observations and atmospheric reanalysis data are utilized to assess the impacts of combined SAM and ENSO on seasonal Antarctic sea ice changes. The joint SAM–ENSO impacts on southern high latitudes are principally controlled by the strength and position of the wave activity and associated atmospheric circulation anomalies affected by their interactions. In-phase events (La Niña/positive SAM and El Niño/negative SAM) are characterized with an SIC dipole located in the Weddell/Bellingshausen Seas and Amundsen/Ross Seas, while out-of-phase events (El Niño/positive SAM and La Niña/negative SAM) experience significant SIC anomalies in the Indian Ocean and western Pacific Ocean. Sea ice budget analyses are conducted to separate the dynamic and thermodynamic contributions inducing the sea ice intensification anomalies. The results show that in-phase intensification anomalies also display a pattern similar to the SIC dipole and are mainly driven by the direct thermodynamic forcing at the ice edge and thermodynamic responses to meridional sea ice drift in the inner pack, especially in autumn and winter. Dynamic processes caused by zonal sea ice drift also play an important role during out-of-phase conditions in addition to the same mechanisms during in-phase conditions.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hao Luo, luohao25@mail.sysu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.75 MB)
Save
  • Arrigo, K. R., 2014: Sea ice ecosystems. Annu. Rev. Mar. Sci., 6, 439467, https://doi.org/10.1146/annurev-marine-010213-135103.

  • Ayres, H. C., and J. A. Screen, 2019: Multimodel analysis of the atmospheric response to Antarctic sea ice loss at quadrupled CO2. Geophys. Res. Lett., 46, 98619869, https://doi.org/10.1029/2019GL083653.

    • Search Google Scholar
    • Export Citation
  • Campitelli, E., L. B. Díaz, and C. Vera, 2022: Assessment of zonally symmetric and asymmetric components of the Southern Annular Mode using a novel approach. Climate Dyn., 58, 161178, https://doi.org/10.1007/s00382-021-05896-5.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, Version 1 (NSIDC-0051). Updated yearly, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/8GQ8LZQVL0VL.

    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., R. Sun, D. H. Bromwich, X. Zou, M. R. Mazloff, and S.-H. Wang, 2022: Impact of downward longwave radiative deficits on Antarctic sea-ice extent predictability during the sea ice growth period. Environ. Res. Lett., 17, 084008, https://doi.org/10.1088/1748-9326/ac7d66.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., and M. H. England, 2011: Observed ENSO teleconnections to Southern Ocean SST anomalies diagnosed from a surface mixed layer heat budget. Geophys. Res. Lett., 38, L09701, https://doi.org/10.1029/2011GL046895.

    • Search Google Scholar
    • Export Citation
  • Crosby, D. S., L. C. Breaker, and W. H. Gemmill, 1993: A proposed definition for vector correlation in geophysics: Theory and application. J. Atmos. Oceanic Technol., 10, 355367, https://doi.org/10.1175/1520-0426(1993)010<0355:APDFVC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and J. M. Wallace, 2012: Influence of the tropics on the Southern Annular Mode. J. Climate, 25, 63306348, https://doi.org/10.1175/JCLI-D-11-00523.1.

    • Search Google Scholar
    • Export Citation
  • Doddridge, E. W., and J. Marshall, 2017: Modulation of the seasonal cycle of Antarctic sea ice extent related to the Southern Annular Mode. Geophys. Res. Lett., 44, 97619768, https://doi.org/10.1002/2017GL074319.

    • Search Google Scholar
    • Export Citation
  • Dong, X., Y. Wang, S. Hou, M. Ding, B. Yin, and Y. Zhang, 2020: Robustness of the recent global atmospheric reanalyses for Antarctic near-surface wind speed climatology. J. Climate, 33, 40274043, https://doi.org/10.1175/JCLI-D-19-0648.1.

    • Search Google Scholar
    • Export Citation
  • Eicken, H., 1992: The role of sea ice in structuring Antarctic ecosystems. Polar Biol., 12, 313, https://doi.org/10.1007/BF00239960.

  • Ferrari, R., M. F. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson, 2014: Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl. Acad. Sci. USA, 111, 87538758, https://doi.org/10.1073/pnas.1323922111.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, C. M. Bitz, S. Solomon, and A. Plumb, 2015: Antarctic Ocean and sea ice response to ozone depletion: A two-time-scale problem. J. Climate, 28, 12061226, https://doi.org/10.1175/JCLI-D-14-00313.1.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., and G. J. Marshall, 2020: The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere. Wiley Interdiscip. Rev.: Climate Change, 11, e652, https://doi.org/10.1002/wcc.652.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., D. H. Bromwich, and K. M. Hines, 2011: Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dyn., 36, 15551576, https://doi.org/10.1007/s00382-010-0905-0.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., J. M. Jones, and J. Renwick, 2012: Seasonal zonal asymmetries in the Southern Annular Mode and their impact on regional temperature anomalies. J. Climate, 25, 62536270, https://doi.org/10.1175/JCLI-D-11-00474.1.

    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462, https://doi.org/10.1029/1999GL900003.

    • Search Google Scholar
    • Export Citation
  • Gong, T., S. B. Feldstein, and D. Luo, 2010: The impact of ENSO on wave breaking and Southern Annular Mode events. J. Atmos. Sci., 67, 28542870, https://doi.org/10.1175/2010JAS3311.1.

    • Search Google Scholar
    • Export Citation
  • Hagman, D., 2022: Unraveling the uncertainties of bulk-derived heat fluxes: A case study for the Southern Ocean. EGU General Assembly 2022, Vienna, Austria, EGU22-393, https://doi.org/10.5194/egusphere-egu22-393.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hobbs, W. R., R. Massom, S. Stammerjohn, P. Reid, G. Williams, and W. Meier, 2016: A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global Planet. Change, 143, 228250, https://doi.org/10.1016/j.gloplacha.2016.06.008.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, https://doi.org/10.1038/ngeo1627.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and N. Kimura, 2016: Observed concentration budgets of Arctic and Antarctic sea ice. J. Climate, 29, 52415249, https://doi.org/10.1175/JCLI-D-16-0121.1.

    • Search Google Scholar
    • Export Citation
  • Holmes, C. R., P. R. Holland, and T. J. Bracegirdle, 2019: Compensating biases and a noteworthy success in the CMIP5 representation of Antarctic sea ice processes. Geophys. Res. Lett., 46, 42994307, https://doi.org/10.1029/2018GL081796.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Jin, D., and B. P. Kirtman, 2009: Why the Southern Hemisphere ENSO responses lead ENSO. J. Geophys. Res., 114, D23101, https://doi.org/10.1029/2009JD012657.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2, 12391252, https://doi.org/10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • King, J. C., G. J. Marshall, S. Colwell, S. Arndt, C. Allen‐Sader, and T. Phillips, 2022: The performance of the ERA-Interim and ERA5 atmospheric reanalyses over Weddell Sea pack ice. J. Geophys. Res. Oceans, 127, e2022JC018805, https://doi.org/10.1029/2022JC018805.

    • Search Google Scholar
    • Export Citation
  • Kirkman, C. H., and C. M. Bitz, 2011: The effect of the sea ice freshwater flux on Southern Ocean temperatures in CCSM3: Deep-ocean warming and delayed surface warming. J. Climate, 24, 22242237, https://doi.org/10.1175/2010JCLI3625.1.

    • Search Google Scholar
    • Export Citation
  • Kurtz, N. T., T. Markus, S. L. Farrell, D. L. Worthen, and L. N. Boisvert, 2011: Observations of recent Arctic sea ice volume loss and its impact on ocean-atmosphere energy exchange and ice production. J. Geophys. Res., 116, C04015, https://doi.org/10.1029/2010JC006235.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., and J. C. Comiso, 2002: Southern Ocean climate and sea ice anomalies associated with the Southern Oscillation. J. Climate, 15, 487501, https://doi.org/10.1175/1520-0442(2002)015<0487:SOCASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., J. C. Comiso, T. Lee, and P. R. Holland, 2016: Linked trends in the South Pacific sea ice edge and Southern Oscillation index. Geophys. Res. Lett., 43, 10 29510 302, https://doi.org/10.1002/2016GL070655.

    • Search Google Scholar
    • Export Citation
  • Lecomte, O., H. Goosse, T. Fichefet, P. R. Holland, P. Uotila, V. Zunz, and N. Kimura, 2016: Impact of surface wind biases on the Antarctic sea ice concentration budget in climate models. Ocean Modell., 105, 6070, https://doi.org/10.1016/j.ocemod.2016.08.001.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287, https://doi.org/10.1175/JCLI3617.1.

    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, and D. G. Martinson, 2004: Interpretation of recent Antarctic sea ice variability. Geophys. Res. Lett., 31, L02205, https://doi.org/10.1029/2003GL018732.

    • Search Google Scholar
    • Export Citation
  • Maksym, T., 2019: Arctic and Antarctic sea ice change: Contrasts, commonalities, and causes. Annu. Rev. Mar. Sci., 11, 187213, https://doi.org/10.1146/annurev-marine-010816-060610.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126, 15811596, https://doi.org/10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Notz, D., and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354, 747750, https://doi.org/10.1126/science.aag2345.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2019: A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl. Acad. Sci. USA, 116, 14 41414 423, https://doi.org/10.1073/pnas.1906556116.

    • Search Google Scholar
    • Export Citation
  • Pettitt, A. N., 2014: Mann–Whitney–Wilcoxon statistic. Wiley StatsRef: Statistics Reference Online, N. Balakrishnan et al., Eds., Wiley, https://doi.org/10.1002/9781118445112.stat02754.

  • Pezza, A. B., H. A. Rashid, and I. Simmonds, 2012: Climate links and recent extremes in Antarctic sea ice, high-latitude cyclones, Southern Annular Mode and ENSO. Climate Dyn., 38, 5773, https://doi.org/10.1007/s00382-011-1044-y.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and Coauthors, 2021: Interannual SAM modulation of Antarctic sea ice extent does not account for its long-term trends, pointing to a limited role for ozone depletion. Geophys. Res. Lett., 48, e2021GL094871, https://doi.org/10.1029/2021GL094871.

    • Search Google Scholar
    • Export Citation
  • Pope, J. O., P. R. Holland, A. Orr, G. J. Marshall, and T. Phillips, 2017: The impacts of El Niño on the observed sea ice budget of West Antarctica. Geophys. Res. Lett., 44, 62006208, https://doi.org/10.1002/2017GL073414.

    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., 2003: Impact of observed sea‐ice concentration on the Southern Hemisphere extratropical atmospheric circulation in summer. J. Geophys. Res., 108, 4687, https://doi.org/10.1029/2002JD003308.

    • Search Google Scholar
    • Export Citation
  • Roach, L. A., and Coauthors, 2020: Antarctic sea ice area in CMIP6. Geophys. Res. Lett., 47, e2019GL086729, https://doi.org/10.1029/2019GL086729.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., and H. van Loon, 1982: Spatial variability of sea level pressure and 500 mb height anomalies over the Southern Hemisphere. Mon. Wea. Rev., 110, 13751392, https://doi.org/10.1175/1520-0493(1982)110<1375:SVOSLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978, https://doi.org/10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. H. England, 2006: Coupled ocean–atmosphere–ice response to variations in the Southern Annular Mode. J. Climate, 19, 44574486, https://doi.org/10.1175/JCLI3843.1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and W. N. Meier, 2019: The Arctic’s sea ice cover: Trends, variability, predictability, and comparisons to the Antarctic. Ann. N. Y. Acad. Sci., 1436, 3653, https://doi.org/10.1111/nyas.13856.

    • Search Google Scholar
    • Export Citation
  • Shu, Q., Z. Song, and F. Qiao, 2015: Assessment of sea ice simulations in the CMIP5 models. Cryosphere, 9, 399409, https://doi.org/10.5194/tc-9-399-2015.

    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., L. M. Ciasto, D. W. J. Thompson, and M. H. England, 2012: Seasonal relationships between large-scale climate variability and Antarctic sea ice concentration. J. Climate, 25, 54515469, https://doi.org/10.1175/JCLI-D-11-00367.1.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., N. J. Dunstone, A. A. Scaife, E. K. Fiedler, D. Copsey, and S. C. Hardiman, 2017: Atmospheric response to Arctic and Antarctic sea ice: The importance of ocean–atmosphere coupling and the background state. J. Climate, 30, 45474565, https://doi.org/10.1175/JCLI-D-16-0564.1.

    • Search Google Scholar
    • Export Citation
  • Song, H.-J., E. Choi, G.-H. Lim, Y. H. Kim, J.-S. Kug, and S.-W. Yeh, 2011: The central Pacific as the export region of the El Niño-Southern Oscillation sea surface temperature anomaly to Antarctic sea ice. J. Geophys. Res., 116, D21113, https://doi.org/10.1029/2011JD015645.

    • Search Google Scholar
    • Export Citation
  • Søren, R., and Coauthors, 2011: Sea ice contribution to the air–sea CO2 exchange in the Arctic and Southern Oceans. Tellus, 63B, 823830, https://doi.org/10.1111/j.1600-0889.2011.00571.x.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., D. G. Martinson, R. C. Smith, X. Yuan, and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res., 113, C03S90, https://doi.org/10.1029/2007JC004269.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, https://doi.org/10.1029/2007GL029703.

    • Search Google Scholar
    • Export Citation
  • Stuart, A., K. Ord, and S. Arnold, 2009: Partial and multiple correlation. Kendall’s Advanced Theory of Statistics, A. Stuart, K. Ord, and S. Arnold, Eds., Vol. 2A, Classical Inference and the Linear Model, 6th ed. Wiley, 510–537.

  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tetzner, D., E. Thomas, and C. Allen, 2019: A validation of ERA5 reanalysis data in the southern Antarctic Peninsula—Ellsworth land region, and its implications for ice core studies. Geosciences, 9, 289, https://doi.org/10.3390/geosciences9070289.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen–Palm flux diagnostics. J. Atmos. Sci., 43, 20702087, https://doi.org/10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Storm tracks in the Southern Hemisphere. J. Atmos. Sci., 48, 21592178, https://doi.org/10.1175/1520-0469(1991)048<2159:STITSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tschudi, M., W. N. Meier, J. S. Stewart, C. Fowler, and J. Maslanik, 2019: Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, version 4 (NSIDC-0116). NSIDC, accessed 3 April 2022, https://doi.org/10.5067/INAWUWO7QH7B.

  • Turner, J., 2004: The El Niño–Southern Oscillation and Antarctica. Int. J. Climatol., 24 (1), 131, https://doi.org/10.1002/joc.965.

    • Search Google Scholar
    • Export Citation
  • Turner, J., and J. Comiso, 2017: Solve Antarctica’s sea-ice puzzle. Nature, 547, 275277, https://doi.org/10.1038/547275a.

  • Turner, J., and Coauthors, 2022: Record low Antarctic sea ice cover in February 2022. Geophys. Res. Lett., 49, e2022GL098904, https://doi.org/10.1029/2022GL098904.

    • Search Google Scholar
    • Export Citation
  • Uotila, P., P. R. Holland, T. Vihma, S. J. Marsland, and N. Kimura, 2014: Is realistic Antarctic sea-ice extent in climate models the result of excessive ice drift? Ocean Modell., 79, 3342, https://doi.org/10.1016/j.ocemod.2014.04.004.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, https://doi.org/10.1007/s10712-014-9284-0.

    • Search Google Scholar
    • Export Citation
  • Wang, H., A. R. Klekociuk, W. J. R. French, S. P. Alexander, and T. A. Warner, 2020: Measurements of cloud radiative effect across the Southern Ocean (43°S–79°S, 63°E–158°W). Atmosphere, 11, 949, https://doi.org/10.3390/atmos11090949.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. Luo, Q. Yang, J. Liu, L. Yu, Q. Shi, and B. Han, 2022: An unprecedented record low Antarctic sea-ice extent during austral summer 2022. Adv. Atmos. Sci., 39, 15911597, https://doi.org/10.1007/s00376-022-2087-1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., K. Hu, G. Huang, and W. Tao, 2021: Asymmetric impacts of El Niña and La Niña on the Pacific–North American teleconnection pattern: The role of subtropical jet stream. Environ. Res. Lett., 16, 114040, https://doi.org/10.1088/1748-9326/ac31ed.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., G. Huang, K. Hu, W. Tao, X. Li, H. Gong, L. Gu, and W. Zhang, 2022: Asymmetric impacts of El Niño and La Niña on the Pacific–South America teleconnection pattern. J. Climate, 35, 18251838, https://doi.org/10.1175/JCLI-D-21-0285.1.

    • Search Google Scholar
    • Export Citation
  • Welhouse, L. J., M. A. Lazzara, L. M. Keller, G. J. Tripoli, and M. H. Hitchman, 2016: Composite analysis of the effects of ENSO events on Antarctica. J. Climate, 29, 17971808, https://doi.org/10.1175/JCLI-D-15-0108.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, A. B., D. H. Bromwich, and K. M. Hines, 2016: Simulating the mutual forcing of anomalous high southern latitude atmospheric circulation by El Niño flavors and the Southern Annular Mode. J. Climate, 29, 22912309, https://doi.org/10.1175/JCLI-D-15-0361.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, E. A., S. C. Riser, E. C. Campbell, and A. P. S. Wong, 2019: Winter upper-ocean stability and ice–ocean feedbacks in the sea ice–covered Southern Ocean. J. Phys. Oceanogr., 49, 10991117, https://doi.org/10.1175/JPO-D-18-0184.1.

    • Search Google Scholar
    • Export Citation
  • Yadav, J., A. Kumar, A. Srivastava, and R. Mohan, 2022: Sea ice variability and trends in the Indian Ocean sector of Antarctica: Interaction with ENSO and SAM. Environ. Res., 212, 113481, https://doi.org/10.1016/j.envres.2022.113481.

    • Search Google Scholar
    • Export Citation
  • Yeo, S.-R., and K.-Y. Kim, 2015: Decadal changes in the Southern Hemisphere sea surface temperature in association with El Niño–Southern Oscillation and Southern Annular Mode. Climate Dyn., 45, 32273242, https://doi.org/10.1007/s00382-015-2535-z.

    • Search Google Scholar
    • Export Citation
  • Yiu, Y. Y. S., and A. C. Maycock, 2019: On the seasonality of the El Niño teleconnection to the Amundsen Sea region. J. Climate, 32, 48294845, https://doi.org/10.1175/JCLI-D-18-0813.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., H. Paek, E. S. Saltzman, and T. Lee, 2015: The early 1990s change in ENSO–PSA–SAM relationships and its impact on Southern Hemisphere climate. J. Climate, 28, 93939408, https://doi.org/10.1175/JCLI-D-15-0335.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and Coauthors, 2011: Interpretation of recent trends in Antarctic sea ice concentration. J. Appl. Remote Sens., 5, 053557, https://doi.org/10.1117/1.3643691.

    • Search Google Scholar
    • Export Citation
  • Yuan, N., M. Ding, J. Ludescher, and A. Bunde, 2017: Increase of the Antarctic sea ice extent is highly significant only in the Ross Sea. Sci. Rep., 7, 41096, https://doi.org/10.1038/srep41096.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., 2004: ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarct. Sci., 16, 415425, https://doi.org/10.1017/S0954102004002238.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., and D. G. Martinson, 2001: The Antarctic dipole and its predictability. Geophys. Res. Lett., 28, 36093612, https://doi.org/10.1029/2001GL012969.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., M. R. Kaplan, and M. A. Cane, 2018: The interconnected global climate system—A review of tropical–polar teleconnections. J. Climate, 31, 57655792, https://doi.org/10.1175/JCLI-D-16-0637.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., T. Li, and S. Li, 2021: Impacts of CP and EP El Niño events on the Antarctic sea ice in austral spring. J. Climate, 34, 93279348, https://doi.org/10.1175/JCLI-D-21-0002.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., A. Xie, X. Qin, Y. Wang, B. Xu, and Y. Wang, 2021: An assessment of ERA5 reanalysis for Antarctic near-surface air temperature. Atmosphere, 12, 217, https://doi.org/10.3390/atmos12020217.

    • Search Google Scholar
    • Export Citation
  • Zubiaurre, I., and N. Calvo, 2012: The El Niño–Southern Oscillation (ENSO) Modoki signal in the stratosphere. J. Geophys. Res., 117, D04104, https://doi.org/10.1029/2011JD016690.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2195 1156 103
Full Text Views 706 382 37
PDF Downloads 840 468 45