Land–Atmosphere Interactions Partially Offset the Accelerated Tibetan Plateau Water Cycle through Dynamical Processes

Jing Sun aDepartment of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute of Global Change Studies, Tsinghua University, Beijing, China

Search for other papers by Jing Sun in
Current site
Google Scholar
PubMed
Close
,
Kun Yang aDepartment of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute of Global Change Studies, Tsinghua University, Beijing, China
bNational Tibetan Plateau Data Center, State Key Laboratory of Tibetan Plateau Earth System and Resource Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Kun Yang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0809-2371
,
Yan Yu cDepartment of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Yan Yu in
Current site
Google Scholar
PubMed
Close
,
Hui Lu aDepartment of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute of Global Change Studies, Tsinghua University, Beijing, China

Search for other papers by Hui Lu in
Current site
Google Scholar
PubMed
Close
, and
Yanluan Lin aDepartment of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute of Global Change Studies, Tsinghua University, Beijing, China

Search for other papers by Yanluan Lin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Tibetan Plateau (TP) has become wetter and warmer during the past four decades, which leads to an adjustment in the surface energy budget, characterized by enhanced surface latent heat and weakened surface sensible heat. However, the impacts of these surface energy changes on climate are unclear. In this study, we investigate the atmospheric response to the altered surface energy budget in the monsoon season over the TP using regional climate simulations. The inhibited surface sensible heating weakens the thermal effect of the TP, which further suppresses low-level convergence and upper-level divergence, thereby weakening the water vapor flux convergence over the plateau. The weakening of low-level air humidity by this dynamical response exceeds the supply from the enhanced surface evaporation, causing decreased precipitation (decreasing more in the wet eastern plateau and less in the dry west). Further analyses show that the precipitation frequency increases mainly for light precipitation while decreasing for heavy precipitation. It is thus demonstrated that on the TP, land surface energy–atmosphere interactions can mitigate the rate of precipitation increase, suppress the increase in frequency of heavy precipitation, and weaken the east–west contrast in precipitation amount, through a dynamical mechanism. Overall, land–atmosphere interactions on the TP exert negative feedback to partially offset the accelerated plateau water cycle under a changing climate.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kun Yang, yangk@tsinghua.edu.cn

Abstract

The Tibetan Plateau (TP) has become wetter and warmer during the past four decades, which leads to an adjustment in the surface energy budget, characterized by enhanced surface latent heat and weakened surface sensible heat. However, the impacts of these surface energy changes on climate are unclear. In this study, we investigate the atmospheric response to the altered surface energy budget in the monsoon season over the TP using regional climate simulations. The inhibited surface sensible heating weakens the thermal effect of the TP, which further suppresses low-level convergence and upper-level divergence, thereby weakening the water vapor flux convergence over the plateau. The weakening of low-level air humidity by this dynamical response exceeds the supply from the enhanced surface evaporation, causing decreased precipitation (decreasing more in the wet eastern plateau and less in the dry west). Further analyses show that the precipitation frequency increases mainly for light precipitation while decreasing for heavy precipitation. It is thus demonstrated that on the TP, land surface energy–atmosphere interactions can mitigate the rate of precipitation increase, suppress the increase in frequency of heavy precipitation, and weaken the east–west contrast in precipitation amount, through a dynamical mechanism. Overall, land–atmosphere interactions on the TP exert negative feedback to partially offset the accelerated plateau water cycle under a changing climate.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kun Yang, yangk@tsinghua.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.6331 MB)
Save
  • Alessi, M. J., D. A. Herrera, C. P. Evans, A. T. DeGaetano, and T. R. Ault, 2022: Soil moisture conditions determine land-atmosphere coupling and drought risk in the northeastern United States. J. Geophys. Res. Atmos., 127, e2021JD034740, https://doi.org/10.1029/2021JD034740.

    • Search Google Scholar
    • Export Citation
  • Ayantobo, O. O., J. Wei, Q. Li, M. Hou, and G. Wang, 2022: Moderate rain intensity increased and contributes significantly to total rain change in recent decades over the Qinghai-Tibet Plateau. J. Hydrol.: Reg. Stud., 39, 100984, https://doi.org/10.1016/j.ejrh.2021.100984.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., A. R. Brown, and N. Wood, 2004: A new parametrization of turbulent orographic form drag. Quart. J. Roy. Meteor. Soc., 130, 13271347, https://doi.org/10.1256/qj.03.73.

    • Search Google Scholar
    • Export Citation
  • Bibi, S., L. Wang, X. P. Li, J. Zhou, D. L. Chen, and T. D. Yao, 2018: Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: A review. Int. J. Climatol., 38, e1e17, https://doi.org/10.1002/joc.5411.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., N. Wei, H. Yuan, S. Zhang, W. Shangguan, S. Liu, X. Lu, and Y. Xin, 2019a: Evaluation of soil thermal conductivity schemes for use in land surface modeling. J. Adv. Model. Earth Syst., 11, 34543473, https://doi.org/10.1029/2019MS001723.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2019b: A global high-resolution data set of soil hydraulic and thermal properties for land surface modeling. J. Adv. Model. Earth Syst., 11, 29963023, https://doi.org/10.1029/2019MS001784.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., M. Meinshausen, V. K. Arora, C. D. Jones, A. Anav, S. K. Liddicoat, and R. Knutti, 2014: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Climate, 27, 511526, https://doi.org/10.1175/JCLI-D-12-00579.1.

    • Search Google Scholar
    • Export Citation
  • Green, J. K., S. I. Seneviratne, A. M. Berg, K. L. Findell, S. Hagemann, D. M. Lawrence, and P. Gentine, 2019: Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 565, 476479, https://doi.org/10.1038/s41586-018-0848-x.

    • Search Google Scholar
    • Export Citation
  • Gu, Z., D. Feng, X. Duan, K. Gong, Y. Li, and T. Yue, 2020: Spatial and temporal patterns of rainfall erosivity in the Tibetan Plateau. Water, 12, 200, https://doi.org/10.3390/w12010200.

    • Search Google Scholar
    • Export Citation
  • He, C., Z. Wang, T. Zhou, and T. Li, 2019: Enhanced latent heating over the Tibetan Plateau as a key to the enhanced East Asian summer monsoon circulation under a warming climate. J. Climate, 32, 33733388, https://doi.org/10.1175/JCLI-D-18-0427.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hu, H., L. R. Leung, and Z. Feng, 2021: Early warm-season mesoscale convective systems dominate soil moisture–precipitation feedback for summer rainfall in central United States. Proc. Natl. Acad. Sci. USA, 118, e2105260118, https://doi.org/10.1073/pnas.2105260118.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., L. P. H. van Beek, and M. F. P. Bierkens, 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, https://doi.org/10.1126/science.1183188.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., and Coauthors, 2020: Importance and vulnerability of the world’s water towers. Nature, 577, 364369, https://doi.org/10.1038/s41586-019-1822-y.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, https://doi.org/10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., and O. Arakawa, 2016: Reduction in the east–west contrast in water budget over the Tibetan Plateau under a future climate. Hydrol. Res. Lett., 10, 113118, https://doi.org/10.3178/hrl.10.113.

    • Search Google Scholar
    • Export Citation
  • Li, L., W. Li, and A. P. Barros, 2013: Atmospheric moisture budget and its regulation of the summer precipitation variability over the southeastern United States. Climate Dyn., 41, 613631, https://doi.org/10.1007/s00382-013-1697-9.

    • Search Google Scholar
    • Export Citation
  • Lin, S., G. Wang, Z. Hu, K. Huang, X. Sun, J. Sun, M. Luo, and X. Xiao, 2021: Dynamics of evapotranspiration and variations in different land-cover regions over the Tibetan Plateau during 1961–2014. J. Hydrometeor., 22, 955969, https://doi.org/10.1175/JHM-D-20-0074.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., M. Lu, H. Yang, A. Duan, B. He, S. Yang, and G. Wu, 2020: Land–atmosphere–ocean coupling associated with the Tibetan Plateau and its climate impacts. Natl. Sci. Rev., 7, 534552, https://doi.org/10.1093/nsr/nwaa011.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Coauthors, 2022: Shifting from homogeneous to hetergeneous surface in estimating terrestrial evapotranspiration: Review and perspectives. Sci. China Earth Sci., 65, 197214, https://doi.org/10.1007/s11430-020-9834-y.

    • Search Google Scholar
    • Export Citation
  • Lu, N., K. E. Trenberth, J. Qin, K. Yang, and L. Yao, 2015: Detecting long-term trends in precipitable water over the Tibetan Plateau by synthesis of station and MODIS observations. J. Climate, 28, 17071722, https://doi.org/10.1175/JCLI-D-14-00303.1.

    • Search Google Scholar
    • Export Citation
  • Ma, C., K. Hu, S. Liu, and J. Wu, 2022: Recent two runoff-triggered debris flow events in Tibet Plateau, China. Landslides, 19, 24092422, https://doi.org/10.1007/s10346-022-01936-1.

    • Search Google Scholar
    • Export Citation
  • Ma, N., and Y. Zhang, 2022: Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation. Agric. For. Meteor., 317, 108887, https://doi.org/10.1016/j.agrformet.2022.108887.

    • Search Google Scholar
    • Export Citation
  • Ma, N., J. Szilagyi, Y. Zhang, and W. Liu, 2019: Complementary-relationship‐based modeling of terrestrial evapotranspiration across China during 1982–2012: Validations and spatiotemporal analyses. J. Geophys. Res. Atmos., 124, 43264351, https://doi.org/10.1029/2018JD029850.

    • Search Google Scholar
    • Export Citation
  • Ma, N., J. Szilagyi, and Y. Zhang, 2021: Calibration-free complementary relationship estimates terrestrial evapotranspiration globally. Water Resour. Res., 57, e2021WR029691, https://doi.org/10.1029/2021WR029691.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and S. I. Seneviratne, 2014: Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophys. Res. Lett., 41, 128134, https://doi.org/10.1002/2013GL058055.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., G. Chen, Y. Yu, and F. Wang, 2017: Regional climate modeling of vegetation feedbacks on the Asian–Australian monsoon systems. J. Climate, 30, 15531582, https://doi.org/10.1175/JCLI-D-16-0669.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, J., 2008: China: The third pole. Nature, 454, 393396, https://doi.org/10.1038/454393a.

  • Sakaguchi, K., and X. B. Zeng, 2009: Effects of soil wetness, plant litter, and under-canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3.5). J. Geophys. Res., 114, D01107, https://doi.org/10.1029/2008JD010834.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., M. D. Heiser, and F. G. Hall, 1992: Relations between surface conductance and spectral vegetation indices at intermediate (100 m2 to 15 km2) length scales. J. Geophys. Res., 97, 19 03319 059, https://doi.org/10.1029/92JD01096.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

  • Sun, J., K. Yang, W. Guo, Y. Wang, J. He, and H. Lu, 2020: Why has the Inner Tibetan Plateau become wetter since the mid-1990s? J. Climate, 33, 85078522, https://doi.org/10.1175/JCLI-D-19-0471.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., Y. Chen, K. Yang, H. Lu, L. Zhao, and D. Zheng, 2021: Influence of organic matter on soil hydrothermal processes in the Tibetan Plateau: Observation and parameterization. J. Hydrometeor., 22, 26592674, https://doi.org/10.1175/JHM-D-21-0059.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., K. Yang, H. Lu, X. Zhou, X. Li, Y. Chen, W. Guo, and J. S. Wright, 2022: Land–atmosphere feedbacks weaken the cooling effect of soil organic matter property toward deep soil on the eastern Tibetan Plateau. J. Hydrometeor., 24, 105117, https://doi.org/10.1175/JHM-D-22-0074.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. A. M. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, https://doi.org/10.1038/nature11377.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311324, https://doi.org/10.1175/2008BAMS2634.1.

    • Search Google Scholar
    • Export Citation
  • Tuttle, S., and G. Salvucci, 2016: Empirical evidence of contrasting soil moisture–precipitation feedbacks across the United States. Science, 352, 825828, https://doi.org/10.1126/science.aaa7185.

    • Search Google Scholar
    • Export Citation
  • Wang, K., Y. Zhang, N. Ma, Y. Guo, and Y. Qiang, 2020: Cryosphere evapotranspiration in the Tibetan Plateau: A review. Sci. Cold Arid Reg., 12, 355370, https://doi.org/10.3724/SP.J.1226.2020.00355.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and Coauthors, 2022: The evaporation on the Tibetan Plateau stops increasing in the recent two decades. J. Geophys. Res. Atmos., 127, e2022JD037377, https://doi.org/10.1029/2022JD037377.

    • Search Google Scholar
    • Export Citation
  • Wang, X., G. Pang, and M. Yang, 2018: Precipitation over the Tibetan Plateau during recent decades: A review based on observations and simulations. Int. J. Climatol., 38, 11161131, https://doi.org/10.1002/joc.5246.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., A. Duan, S. Yang, and K. Ullah, 2017: Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. J. Geophys. Res. Atmos., 122, 614630, https://doi.org/10.1002/2016JD025515.

    • Search Google Scholar
    • Export Citation
  • Wu, G., and Y. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913927, https://doi.org/10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, G., and Coauthors, 2015: Tibetan Plateau climate dynamics: Recent research progress and outlook. Natl. Sci. Rev., 2, 100116, https://doi.org/10.1093/nsr/nwu045.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., F. De Sales, R. Vasic, C. R. Mechoso, A. Arakawa, and S. Prince, 2010: Global and seasonal assessment of interactions between climate and vegetation biophysical processes: A GCM study with different land–vegetation representations. J. Climate, 23, 14111433, https://doi.org/10.1175/2009JCLI3054.1.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., and Coauthors, 2021: Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction project, phase I (LS4P-I): Organization and experimental design. Geosci. Model Dev., 14, 44654494, https://doi.org/10.5194/gmd-14-4465-2021.

    • Search Google Scholar
    • Export Citation
  • Yang, K., H. Wu, J. Qin, C. G. Lin, W. J. Tang, and Y. Y. Chen, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change, 112, 7991, https://doi.org/10.1016/j.gloplacha.2013.12.001.

    • Search Google Scholar
    • Export Citation
  • Yang, L., G. Sun, L. Zhi, and J. Zhao, 2018: Negative soil moisture-precipitation feedback in dry and wet regions. Sci. Rep., 8, 4026, https://doi.org/10.1038/s41598-018-22394-7.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., K. Yang, H. Lu, J. He, J. Sun, and Y. Wang, 2021: Characterizing the features of precipitation for the Tibetan Plateau among four gridded datasets: Detection accuracy and spatio-temporal variabilities. Atmos. Res., 264, 105875, https://doi.org/10.1016/j.atmosres.2021.105875.

    • Search Google Scholar
    • Export Citation
  • Yue, S., B. Wang, K. Yang, Z. Xie, H. Lu, and J. He, 2021: Mechanisms of the decadal variability of monsoon rainfall in the southern Tibetan Plateau. Environ. Res. Lett., 16, 014011, https://doi.org/10.1088/1748-9326/abcb36.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. Q., and Coauthors, 2017: Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys. Res. Lett., 44, 252260, https://doi.org/10.1002/2016GL072033.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. Q., W. Luo, W. Chen, and G. Zheng, 2019: A robust but variable lake expansion on the Tibetan Plateau. Sci. Bull., 64, 13061309, https://doi.org/10.1016/j.scib.2019.07.018.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., T. Zhou, and L. Zhang, 2017: Wetting and greening Tibetan Plateau in early summer in recent decades. J. Geophys. Res. Atmos., 122, 58085822, https://doi.org/10.1002/2017JD026468.

    • Search Google Scholar
    • Export Citation
  • Zhou, C. Y., P. Zhao, and J. M. Chen, 2019: The interdecadal change of summer water vapor over the Tibetan Plateau and associated mechanisms. J. Climate, 32, 41034119, https://doi.org/10.1175/JCLI-D-18-0364.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., and Coauthors, 2019: Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl. Acad. Sci. USA, 116, 18 84818 853, https://doi.org/10.1073/pnas.1904955116.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., and Coauthors, 2021: Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Climate Change, 11, 3844, https://doi.org/10.1038/s41558-020-00945-z.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., K. Yang, and Y. Wang, 2018: Implementation of a turbulent orographic form drag scheme in WRF and its application to the Tibetan Plateau. Climate Dyn., 50, 24432455, https://doi.org/10.1007/s00382-017-3677-y.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1086 694 50
Full Text Views 360 239 11
PDF Downloads 452 296 13