• Adam, O., T. Bischoff, and T. Schneider, 2016: Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: Zonally varying shifts of the ITCZ. J. Climate, 29, 72817293, https://doi.org/10.1175/JCLI-D-15-0710.1.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., N. Siler, A. Donohoe, and G. H. Roe, 2019: Meridional atmospheric heat transport constrained by energetics and mediated by large-scale diffusion. J. Climate, 32, 36553680, https://doi.org/10.1175/JCLI-D-18-0563.1.

    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., A. Engström, R. Wood, and R. J. Charlson, 2017: Evaluation of hemispheric asymmetries in marine cloud radiative properties. J. Climate, 30, 41314147, https://doi.org/10.1175/JCLI-D-16-0263.1.

    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 49374951, https://doi.org/10.1175/JCLI-D-13-00650.1.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., M. A. Ringer, and A. Jones, 2008: Evaluation of the surface radiation budget in the atmospheric component of the Hadley Centre Global Environmental Model (HadGEM1). J. Climate, 21, 47234748, https://doi.org/10.1175/2008JCLI2097.1.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 1986: A comparison of mass and energy budgets from two FGGE datasets and a GCM. Mon. Wea. Rev., 114, 885902, https://doi.org/10.1175/1520-0493(1986)114<0885:ACOMAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and N. E. Sargent, 1985: Vertically integrated budgets of mass and energy for the globe. J. Atmos. Sci., 42, 15921613, https://doi.org/10.1175/1520-0469(1985)042<1592:VIBOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and R. L. Korty, 2016: Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall. Nat. Geosci., 9, 892897, https://doi.org/10.1038/ngeo2833.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., A. G. Pendergrass, A. D. Rapp, and K. R. Wodzicki, 2018: Response of the intertropical convergence zone to climate change: Location, width and strength. Curr. Climate Change Rep., 4, 355370, https://doi.org/10.1007/s40641-018-0110-5.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2016: Clouds and the atmospheric circulation response to warming. J. Climate, 29, 783799, https://doi.org/10.1175/JCLI-D-15-0394.1.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 1985: Global water vapor flux and maintenance during FGGE. Mon. Wea. Rev., 113, 18011819, https://doi.org/10.1175/1520-0493(1985)113<1801:GWVFAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-J., Y.-T. Hwang, and P. Ceppi, 2021: The impacts of cloud-radiative changes on poleward atmospheric and oceanic energy transport in a warmer climate. J. Climate, 34, 78577874, https://doi.org/10.1175/JCLI-D-20-0949.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    • Search Google Scholar
    • Export Citation
  • Corell, H., J. Nilsson, K. Döös, and G. Broström, 2008: Wind sensitivity of the inter-ocean heat exchange. Tellus, 61A, 635653, https://doi.org/10.1111/j.1600-0870.2009.00414.x.

    • Search Google Scholar
    • Export Citation
  • Datseris, G., and B. Stevens, 2021: Earth’s albedo and its symmetry. AGU Adv., 2, e2021AV000440, https://doi.org/10.1029/2021AV000440.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. McGee, 2013: The relationship between ITCZ and cross-equatorial atmosphere heat transport: From the seasonal cycle to the last glacial maximum. J. Climate, 26, 35973618, https://doi.org/10.1175/JCLI-D-12-00467.1.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2008: The annual cycle of the energy budget. Part I: Global mean and land–ocean exchanges. J. Climate, 21, 22972312, https://doi.org/10.1175/2007JCLI1935.1.

    • Search Google Scholar
    • Export Citation
  • Forget, G., and D. Ferreira, 2019: Global ocean heat transport dominated by heat export from the tropical Pacific. Nat. Geosci., 12, 351354, https://doi.org/10.1038/s41561-019-0333-7.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, https://doi.org/10.1175/JCLI-D-11-00116.1.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16, 696705, https://doi.org/10.1175/1520-0442(2003)016<0696:LSOHAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gruber, A., 1972: Fluctuations in the position of the ITCZ in the Atlantic and Pacific Oceans. J. Atmos. Sci., 29, 193197, https://doi.org/10.1175/1520-0469(1972)029<0193:FITPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and Coauthors, 2016: The impact of equilibrating hemispheric albedos on tropical performance in the HadGEM2-ES coupled climate model. Geophys. Res. Lett., 43, 395403, https://doi.org/10.1002/2015GL066903.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 49354940, https://doi.org/10.1073/pnas.1213302110.

    • Search Google Scholar
    • Export Citation
  • Kato, S., F. G. Rose, D. A. Rutan, and T. P. Charlock, 2008: Cloud effects on the meridional atmospheric energy budget estimated from Clouds and the Earth’s Radiant Energy System (CERES) data. J. Climate, 21, 42234241, https://doi.org/10.1175/2008JCLI1982.1.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 46174636, https://doi.org/10.1175/JCLI-D-15-0358.1.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 442458, https://doi.org/10.1109/TGRS.2002.808226.

    • Search Google Scholar
    • Export Citation
  • Kopp, G., 2021: Science highlights and final updates from 17 years of total solar irradiance measurements from the Solar Radiation and Climate Experiment/Total Irradiance Monitor (SORCE/TIM). Sol. Phys., 296, 133, https://doi.org/10.1007/s11207-021-01853-x.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, https://doi.org/10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., H. Wang, A. Cheng, S. Kato, J. T. Fasullo, K.-M. Xu, and R. P. Allan, 2016: Observational constraints on atmospheric and oceanic cross-equatorial heat transports: Revisiting the precipitation asymmetry problem in climate models. Climate Dyn., 46, 32393257, https://doi.org/10.1007/s00382-015-2766-z.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and Coauthors, 2018: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA) Edition-4.0 data product. J. Climate, 31, 895918, https://doi.org/10.1175/JCLI-D-17-0208.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., D. Xue, L. R. Leung, F. Liu, F. Song, B. Harrop, and W. Zhou, 2021: The leading modes of Asian summer monsoon variability as pulses of atmospheric energy flow. Geophys. Res. Lett., 48, e2020GL091629, https://doi.org/10.1029/2020GL091629.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the inter-tropical convergence zone. Climate Dyn., 42, 19671979, https://doi.org/10.1007/s00382-013-1767-z.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 255–316.

  • Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, https://doi.org/10.1038/nclimate2513.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, https://doi.org/10.1038/ngeo1580.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. O’Brien, P. J. Webster, P. Pilewski, S. Kato, and J. Li, 2015: The albedo of earth. Rev. Geophys., 53, 141163, https://doi.org/10.1002/2014RG000449.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., M. Z. Hakuba, M. Hawcroft, J. M. Haywood, A. Behrangi, J. E. Kay, and P. J. Webster, 2016: The curious nature of the hemispheric symmetry of the earth’s water and energy balances. Curr. Climate Change Rep., 2, 135147, https://doi.org/10.1007/s40641-016-0043-9.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Constraints on dynamical transports of energy on a spherical planet. Dyn. Atmos. Oceans, 2, 123139, https://doi.org/10.1016/0377-0265(78)90006-4.

    • Search Google Scholar
    • Export Citation
  • Tian, B., and V. Ramanathan, 2002: Role of tropical clouds in surface and atmospheric energy budget. J. Climate, 15, 296305, https://doi.org/10.1175/1520-0442(2002)015<0296:ROTCIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and A. Solomon, 1994: The global heat balance: Heat transports in the atmosphere and ocean. Climate Dyn., 10, 107134, https://doi.org/10.1007/BF00210625.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443, https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2004: The flow of energy through the earth’s climate system. Quart. J. Roy. Meteor. Soc., 130, 26772701, https://doi.org/10.1256/qj.04.83.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the Southern Oceans. J. Climate, 23, 440454, https://doi.org/10.1175/2009JCLI3152.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 31293144, https://doi.org/10.1175/JCLI-D-13-00294.1.

    • Search Google Scholar
    • Export Citation
  • Trepte, Q. Z., and Coauthors, 2019: Global cloud detection for CERES edition 4 using Terra and Aqua MODIS data. IEEE Trans. Geosci. Remote Sens., 57, 94109449, https://doi.org/10.1109/TGRS.2019.2926620.

    • Search Google Scholar
    • Export Citation
  • van der Vorst, H. A., 1992: Bi-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 13, 631644, https://doi.org/10.1137/0913035.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2013: The observed hemispheric symmetry in reflected shortwave irradiance. J. Climate, 26, 468477, https://doi.org/10.1175/JCLI-D-12-00132.1.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2014: Compensation of hemispheric albedo asymmetries by shifts of the ITCZ and tropical clouds. J. Climate, 27, 10291045, https://doi.org/10.1175/JCLI-D-13-00205.1.

    • Search Google Scholar
    • Export Citation
  • Vonder Haar, T. H., and V. E. Suomi, 1971: Measurements of the Earth’s radiation budget from satellites during a five-year period. Part I: Extended time and space means. J. Atmos. Sci., 28, 305314, https://doi.org/10.1175/1520-0469(1971)028<0305:MOTERB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and Coauthors, 2016: An imperative to monitor earth’s energy imbalance. Nat. Climate Change, 6, 138144, https://doi.org/10.1038/nclimate2876.

    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and Coauthors, 2020: Heat stored in the earth system: Where does the energy go? Earth Syst. Sci. Data, 12, 20132041, https://doi.org/10.5194/essd-12-2013-2020.

    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., and Coauthors, 2023: Heat stored in the earth system 1960–2020: Where does the energy go ? Earth Syst. Sci. Data, 15, 16751709, https://doi.org/10.5194/essd-15-1675-2023.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2001: Decomposition of global ocean currents using a simple iterative method. J. Atmos. Oceanic Technol., 18, 691703, https://doi.org/10.1175/1520-0426(2001)018<0691:DOGOCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., 2003: Efficiency of storm tracks an important climate parameter? The role of cloud radiative forcing in poleward heat transport. J. Geophys. Res., 108, 4018, https://doi.org/10.1029/2002JD002756.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077%3C0853:CATERE%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., and W. Rossow, 1997: Estimating meridional energy transports by the atmospheric and oceanic general circulations using boundary fluxes. J. Climate, 10, 23582373, https://doi.org/10.1175/1520-0442(1997)010<2358:EMETBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 344 344 181
Full Text Views 136 136 79
PDF Downloads 161 161 85

Implied Heat Transport from CERES Data: Direct Radiative Effect of Clouds on Regional Patterns and Hemispheric Symmetry

F. A. PearceaMet Office Hadley Centre, Exeter, United Kingdom

Search for other papers by F. A. Pearce in
Current site
Google Scholar
PubMed
Close
and
A. Bodas-SalcedoaMet Office Hadley Centre, Exeter, United Kingdom

Search for other papers by A. Bodas-Salcedo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We calculate the implied horizontal heat transport due to the spatial anomalies of radiative fluxes at the top of the atmosphere (TOA). The regional patterns of implied heat transport for different components of the TOA fluxes are calculated by solving the Poisson equation with the flux components as source terms. The shortwave (SW) part of the spectrum governs the spatial patterns of the total implied heat transport. Using the cloud radiative effect (CRE) as source term, we show that the direct effect of clouds is to reduce the poleward heat transport in the majority of the Northern Hemisphere and at high southern latitudes. Clouds flatten the gradients of the clear-sky energy flux potential and hence reduce the implied heat transport with respect to clear skies. Clouds reduce the implied cross-equatorial heat transport with respect to clear sky through changes in the SW part of the spectrum. It changes from 0.83 PW in clear sky to −0.01 PW in all sky, equivalent to the hemispheric albedo symmetry reported in previous studies. We investigate hemispheric symmetry by introducing a metric that measures the symmetry of implied meridional heat transports at all latitudes. The direct effect of clouds is to increase the symmetry in the implied heat transport, and this is achieved through an increase in symmetry in the SW part of the spectrum in the tropics. Whether this is trivial or the result of a fundamental control in the climate system is still an open question.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. Bodas-Salcedo, alejandro.bodas@metoffice.gov.uk

Abstract

We calculate the implied horizontal heat transport due to the spatial anomalies of radiative fluxes at the top of the atmosphere (TOA). The regional patterns of implied heat transport for different components of the TOA fluxes are calculated by solving the Poisson equation with the flux components as source terms. The shortwave (SW) part of the spectrum governs the spatial patterns of the total implied heat transport. Using the cloud radiative effect (CRE) as source term, we show that the direct effect of clouds is to reduce the poleward heat transport in the majority of the Northern Hemisphere and at high southern latitudes. Clouds flatten the gradients of the clear-sky energy flux potential and hence reduce the implied heat transport with respect to clear skies. Clouds reduce the implied cross-equatorial heat transport with respect to clear sky through changes in the SW part of the spectrum. It changes from 0.83 PW in clear sky to −0.01 PW in all sky, equivalent to the hemispheric albedo symmetry reported in previous studies. We investigate hemispheric symmetry by introducing a metric that measures the symmetry of implied meridional heat transports at all latitudes. The direct effect of clouds is to increase the symmetry in the implied heat transport, and this is achieved through an increase in symmetry in the SW part of the spectrum in the tropics. Whether this is trivial or the result of a fundamental control in the climate system is still an open question.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. Bodas-Salcedo, alejandro.bodas@metoffice.gov.uk
Save