Distinct Impacts of Two Types of Summer ENSO with Different Temporal Evolutions on the Asian Summer Monsoon: Role of the Tropical Indo-Western Pacific

Xianke Yang aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
dUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Xianke Yang in
Current site
Google Scholar
PubMed
Close
,
Ping Huang aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
cState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Ping Huang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7891-8848
,
Peng Hu aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Peng Hu in
Current site
Google Scholar
PubMed
Close
, and
Zhibiao Wang aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhibiao Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

ENSO shows great diversity in temporal evolution, exerting different climatic impacts on the global scale. Previous studies suggest that summer ENSOs can be classified into two types with different evolutions: “continuing ENSOs” persist from the previous winter and “emerging ENSOs” newly develop from late spring. In this study, we define two indices for continuing and emerging ENSOs via the linear combination of the two leading modes of the evolutionary anomalies of tropical sea surface temperature (SST) from the prior September to August, which reflects the distinct characteristics of the two types of ENSO well. The two types of ENSO dominate the two leading modes of the SST variability in the tropical Indo–western Pacific (TIWP) and the related Asian summer monsoon anomalies. During continuing ENSOs, the related TIWP SST anomalies show positive anomalies in the tropical Indian Ocean and northwest Pacific and negative ones in the New Guinea region. The warm Kelvin wave forced by the tropical Indian Ocean warming propagates into the tropical western Pacific, exciting the meridional East Asia–Pacific/Pacific–Japan pattern and causing a dipole precipitation pattern in East Asia. During emerging ENSOs, the related TIWP SST anomalies show negative anomalies in the warm pool and positive ones in the western Indian Ocean. The negative SST anomalies in the warm pool induce a westward equatorial Rossby wave conducive to the suppression of the Indian summer monsoon rainfall, whereas the Matsuno–Gill response to the warm pool cooling leads to negative anomalies in East Asian summer rainfall. This mechanism can be simulated well in the CMIP6 and Pacific Ocean–Global Atmosphere experiments.

Significance Statement

ENSO displays diversity in its amplitude, spatial pattern, temporal evolution, and impact. Although previous studies have systematically investigated the diversity of ENSO spatial locations, there are few studies on the diversity of ENSO evolution and the impacts on the Asian summer monsoon. Here, we define two indices for so-called continuing and emerging ENSOs via the linear combination of the two leading modes of the evolutionary anomalies of tropical sea surface temperature (SST) from the prior September to August. Then, we reveal that the two leading modes of the tropical Indo–western Pacific SST variability are dominated by the two types of ENSO, respectively, and act as a bridge via which the two types of ENSO can exert different impacts on the Asian summer monsoon.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ping Huang, huangping@mail.iap.ac.cn

Abstract

ENSO shows great diversity in temporal evolution, exerting different climatic impacts on the global scale. Previous studies suggest that summer ENSOs can be classified into two types with different evolutions: “continuing ENSOs” persist from the previous winter and “emerging ENSOs” newly develop from late spring. In this study, we define two indices for continuing and emerging ENSOs via the linear combination of the two leading modes of the evolutionary anomalies of tropical sea surface temperature (SST) from the prior September to August, which reflects the distinct characteristics of the two types of ENSO well. The two types of ENSO dominate the two leading modes of the SST variability in the tropical Indo–western Pacific (TIWP) and the related Asian summer monsoon anomalies. During continuing ENSOs, the related TIWP SST anomalies show positive anomalies in the tropical Indian Ocean and northwest Pacific and negative ones in the New Guinea region. The warm Kelvin wave forced by the tropical Indian Ocean warming propagates into the tropical western Pacific, exciting the meridional East Asia–Pacific/Pacific–Japan pattern and causing a dipole precipitation pattern in East Asia. During emerging ENSOs, the related TIWP SST anomalies show negative anomalies in the warm pool and positive ones in the western Indian Ocean. The negative SST anomalies in the warm pool induce a westward equatorial Rossby wave conducive to the suppression of the Indian summer monsoon rainfall, whereas the Matsuno–Gill response to the warm pool cooling leads to negative anomalies in East Asian summer rainfall. This mechanism can be simulated well in the CMIP6 and Pacific Ocean–Global Atmosphere experiments.

Significance Statement

ENSO displays diversity in its amplitude, spatial pattern, temporal evolution, and impact. Although previous studies have systematically investigated the diversity of ENSO spatial locations, there are few studies on the diversity of ENSO evolution and the impacts on the Asian summer monsoon. Here, we define two indices for so-called continuing and emerging ENSOs via the linear combination of the two leading modes of the evolutionary anomalies of tropical sea surface temperature (SST) from the prior September to August. Then, we reveal that the two leading modes of the tropical Indo–western Pacific SST variability are dominated by the two types of ENSO, respectively, and act as a bridge via which the two types of ENSO can exert different impacts on the Asian summer monsoon.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ping Huang, huangping@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.13 MB)
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 20442055, https://doi.org/10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, N. H. Saji, and T. Yamagata, 2004: Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J. Climate, 17, 31413155, https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Capotondi, A., and P. D. Sardeshmukh, 2017: Is El Niño really changing? Geophys. Res. Lett., 44, 85488556, https://doi.org/10.1002/2017GL074515.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Chakraborty, A., 2018: Preceding winter La Niña reduces Indian summer monsoon rainfall. Environ. Res. Lett., 13, 054030, https://doi.org/10.1088/1748-9326/aabdd5.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Y. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, H., F. Teng, W. Zhang, and H. Liao, 2017: Impacts of anomalous midlatitude cyclone activity over East Asia during summer on the decadal mode of East Asian summer monsoon and its possible mechanism. J. Climate, 30, 739753, https://doi.org/10.1175/JCLI-D-16-0155.1.

    • Search Google Scholar
    • Export Citation
  • Chen, W., J.-K. Park, B. Dong, R. Lu, and W.-S. Jung, 2012: The relationship between El Niño and the western North Pacific summer climate in a coupled GCM: Role of the transition of El Niño decaying phases. J. Geophys. Res., 117, D12111, https://doi.org/10.1029/2011JD017385.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., H. S. Harsha, C. Gnanaseelan, G. Srinivas, A. Parekh, P. Pillai, and C. V. Naidu, 2017: Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño. Climate Dyn., 48, 27072727, https://doi.org/10.1007/s00382-016-3233-1.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., S.-P. Xie, and R. S. Nanjundiah, 2021: Drivers of the Indian summer monsoon climate variability. Indian Summer Monsoon Variability, J. Chowdary, A. Parekh, and C. Gnanaseelan, Eds., Elsevier, 1–28, https://doi.org/10.1016/B978-0-12-822402-1.00020-X.

  • Darshana, P., J. S. Chowdary, A. Parekh, and C. Gnanaseelan, 2022: Relationship between the Indo-western Pacific Ocean capacitor mode and Indian summer monsoon rainfall in CMIP6 models. Climate Dyn., 59, 393415, https://doi.org/10.1007/s00382-021-06133-9.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Search Google Scholar
    • Export Citation
  • Du, Y., Z. Chen, Y. Zhang, K. Hu, X. Zheng, and W. Yu, 2021: Influence of south tropical Indian Ocean dynamics on the Indian summer monsoon. Indian Summer Monsoon Variability, J. Chowdary, A. Parekh, and C. Gnanaseelan, Eds., Elsevier, 183–196, https://doi.org/10.1016/B978-0-12-822402-1.00013-2.

  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Fan, F., R. Lin, X. Fang, F. Xue, F. Zheng, and J. Zhu, 2021: Influence of the eastern Pacific and central Pacific types of ENSO on the South Asian summer monsoon. Adv. Atmos. Sci., 38, 1228, https://doi.org/10.1007/s00376-020-0055-1.

    • Search Google Scholar
    • Export Citation
  • Feng, J., and W. Chen, 2014: Interference of the East Asian winter monsoon in the impact of ENSO on the East Asian summer monsoon in decaying phases. Adv. Atmos. Sci., 31, 344354, https://doi.org/10.1007/s00376-013-3118-8.

    • Search Google Scholar
    • Export Citation
  • Fu, C., H. F. Diaz, and J. O. Fletcher, 1986: Characteristics of the response of sea-surface temperature in the central Pacific associated with warm episodes of the Southern Oscillation. Mon. Wea. Rev., 114, 17161739, https://doi.org/10.1175/1520-0493(1986)114<1716:COTROS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, Z., Z.-Z. Hu, F. Zheng, X. Li, S. Li, and B. Zhang, 2023: Single-year and double-year El Niños. Climate Dyn., 60, 22352243, https://doi.org/10.1007/s00382-022-06425-8.

    • Search Google Scholar
    • Export Citation
  • Ha, K.-J., Y.-W. Seo, J.-Y. Lee, R. H. Kripalani, and K.-S. Yun, 2018: Linkages between the South and East Asian summer monsoons: A review and revisit. Climate Dyn., 51, 42074227, https://doi.org/10.1007/s00382-017-3773-z.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 5775, https://doi.org/10.1175/JCLI-D-12-00837.1.

    • Search Google Scholar
    • Export Citation
  • Hu, K., S.-P. Xie, and G. Huang, 2017: Orographically anchored El Niño effect on summer rainfall in central China. J. Climate, 30, 10 03710 045, https://doi.org/10.1175/JCLI-D-17-0312.1.

    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, S.-P. Xie, and S.-M. Long, 2019: Effect of the mean flow on the anomalous anticyclone over the Indo-northwest Pacific in post-El Niño summers. Climate Dyn., 53, 57255741, https://doi.org/10.1007/s00382-019-04893-z.

    • Search Google Scholar
    • Export Citation
  • Hu, P., W. Chen, Z. Li, S. Chen, L. Wang, and Y. Liu, 2022: Close linkage of the South China Sea summer monsoon onset and extreme rainfall in May over Southeast Asia: Role of the synoptic-scale systems. J. Climate, 35, 43474362, https://doi.org/10.1175/JCLI-D-21-0740.1.

    • Search Google Scholar
    • Export Citation
  • Hu, S., T. Zhou, and B. Wu, 2021: Impact of developing ENSO on Tibetan Plateau summer rainfall. J. Climate, 34, 33853400, https://doi.org/10.1175/JCLI-D-20-0612.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, H.-L. Ren, H. Wang, M. L’Heureux, and F.-F. Jin, 2013: Weakened interannual variability in the tropical Pacific Ocean since 2000. J. Climate, 26, 26012613, https://doi.org/10.1175/JCLI-D-12-00265.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, J. Zhu, and H.-L. Ren, 2017: Interdecadal variations of ENSO around 1999/2000. J. Meteor. Res., 31, 7381, https://doi.org/10.1007/s13351-017-6074-x.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, J. Zhu, M. L’Heureux, M. J. McPhaden, and J.-Y. Yu, 2020: The interdecadal shift of ENSO properties in 1999/2000: A review. J. Climate, 33, 44414462, https://doi.org/10.1175/JCLI-D-19-0316.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Huang, R., and W. Li, 1987: Influence of heat source anomaly over the western tropical Pacific on the subtropical high over East Asia and its physical mechanism (in Chinese). Chin. J. Atmos. Sci., 12, 107116, https://doi.org/10.3878/j.issn.1006-9895.1988.t1.08.

    • Search Google Scholar
    • Export Citation
  • Huang, R., Y. Liu, Z. Du, J. Chen, and J. Huangfu, 2017: Differences and links between the East Asian and South Asian summer monsoon systems: Characteristics and variability. Adv. Atmos. Sci., 34, 12041218, https://doi.org/10.1007/s00376-017-7008-3.

    • Search Google Scholar
    • Export Citation
  • Iwakiri, T., and M. Watanabe, 2022: Multi-year ENSO dynamics as revealed in observations, climate model simulations, and the linear recharge oscillator. J. Climate, 35, 40254042, https://doi.org/10.1175/JCLI-D-22-0108.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, W., G. Huang, P. Huang, R. Wu, K. Hu, and W. Chen, 2019: Northwest Pacific anticyclonic anomalies during post–El Niño summers determined by the pace of El Niño decay. J. Climate, 32, 34873503, https://doi.org/10.1175/JCLI-D-18-0793.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, W., G. Li, and G. Wang, 2021: Effect of the El Niño decaying pace on the East Asian summer monsoon circulation pattern during post-El Niño summers. Atmosphere, 12, 140, https://doi.org/10.3390/atmos12020140.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., and J.-Y. Yu, 2020: Understanding re-intensified multi-year El Niño events. Geophys. Res. Lett., 47, e2020GL087644, https://doi.org/10.1029/2020GL087644.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-W., and J.-Y. Yu, 2022: Single- and multi-year ENSO events controlled by pantropical climate interactions. npj Climate Atmos. Sci., 5, 88, https://doi.org/10.1038/s41612-022-00305-y.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and P. S. Schopf, 1998: Decadal variability in ENSO predictability and prediction. J. Climate, 11, 28042822, https://doi.org/10.1175/1520-0442(1998)011<2804:DVIEPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 20092030, https://doi.org/10.1256/qj.05.204.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2016: The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat. Geosci., 9, 669673, https://doi.org/10.1038/ngeo2770.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S.-P. Xie, and H. Nakamura, 2011: Dynamics of interannual variability in summer precipitation over East Asia. J. Climate, 24, 54355453, https://doi.org/10.1175/2011JCLI4099.1.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the northwestern Pacific. Proc. Natl. Acad. Sci. USA, 110, 75747579, https://doi.org/10.1073/pnas.1215582110.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., B. Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 21562159, https://doi.org/10.1126/science.284.5423.2156.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., B. Rajagopalan, M. Hoerling, G. Bates, and M. Cane, 2006: Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314, 115119, https://doi.org/10.1126/science.1131152.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, https://doi.org/10.1029/2005GL022738.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and Coauthors, 2017: Observing and predicting the 2015/16 El Niño. Bull. Amer. Meteor. Soc., 98, 13631382, https://doi.org/10.1175/BAMS-D-16-0009.1.

    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, B. Wu, T. Zhou, C.-P. Chang, and R. Zhang, 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 9871006, https://doi.org/10.1007/s13351-017-7147-6.

    • Search Google Scholar
    • Export Citation
  • Li, T., and Coauthors, 2022: Distinctive South and East Asian monsoon circulation responses to global warming. Sci. Bull., 67, 762770, https://doi.org/10.1016/j.scib.2021.12.001.

    • Search Google Scholar
    • Export Citation
  • Liao, H., C. Wang, and Z. Song, 2021: ENSO phase-locking biases from the CMIP5 to CMIP6 models and a possible explanation. Deep-Sea Res. II, 189190, 104943, https://doi.org/10.1016/j.dsr2.2021.104943.

    • Search Google Scholar
    • Export Citation
  • Liu, F., and Coauthors, 2022: Tropical volcanism enhanced the East Asian summer monsoon during the last millennium. Nat. Commun., 13, 3429, https://doi.org/10.1038/s41467-022-31108-7.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and R. Huang, 2019: Linkages between the South and East Asian monsoon water vapor transport during boreal summer. J. Climate, 32, 45094524, https://doi.org/10.1175/JCLI-D-18-0498.1.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, https://doi.org/10.1029/2012GL051826.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, https://doi.org/10.1029/2011GL048275.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., B. V. Smoliak, D. P. Lettenmaier, and J. M. Wallace, 2012: A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proc. Natl. Acad. Sci. USA, 109, 72137217, https://doi.org/10.1073/pnas.1119150109.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., 2019: ENSO diversity from an atmospheric perspective. Curr. Climate Change Rep., 5, 245257, https://doi.org/10.1007/s40641-019-00138-7.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, https://doi.org/10.1175/2010JCLI3592.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., R. Wang, P. Zhai, Y. Ding, and B. Lu, 2017: Upper-ocean dynamical features and prediction of the super El Niño in 2015/16: A comparison with the cases in 1982/83 and 1997/98. J. Meteor. Res., 31, 278294, https://doi.org/10.1007/s13351-017-6194-3.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., F.-F. Jin, A. Timmermann, and S. McGregor, 2015: Combination mode dynamics of the anomalous northwest Pacific anticyclone. J. Climate, 28, 10931111, https://doi.org/10.1175/JCLI-D-14-00225.1.

    • Search Google Scholar
    • Export Citation
  • Sun, L., X.-Q. Yang, L. Tao, J. Fang, and X. Sun, 2021: Changing impact of ENSO events on the following summer rainfall in eastern China since the 1950s. J. Climate, 34, 81058123, https://doi.org/10.1175/JCLI-D-21-0018.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takaya, Y., Y. Kosaka, M. Watanabe, and S. Maeda, 2021: Skilful predictions of the Asian summer monsoon one year ahead. Nat. Commun., 12, 2094, https://doi.org/10.1038/s41467-021-22299-6.

    • Search Google Scholar
    • Export Citation
  • Tang, H., K. Hu, G. Huang, Y. Wang, and W. Tao, 2022: Intensification and northward extension of northwest Pacific anomalous anticyclone in El Niño decaying mid-summer: An energetic perspective. Climate Dyn., 58, 591606, https://doi.org/10.1007/s00382-021-05923-5.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., I. Richter, and Y. Kosaka, 2019: ENSO influence on the Atlantic Niño, revisited: Multi-year versus single-year ENSO events. J. Climate, 32, 45854600, https://doi.org/10.1175/JCLI-D-18-0683.1.

    • Search Google Scholar
    • Export Citation
  • Vibhute, A., S. Halder, P. Singh, A. Parekh, J. S. Chowdary, and C. Gnanaseelan, 2020: Decadal variability of tropical Indian Ocean sea surface temperature and its impact on the Indian summer monsoon. Theor. Appl. Climatol., 141, 551566, https://doi.org/10.1007/s00704-020-03216-1.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., 1933: Seasonal weather and its prediction. Nature, 132, 805808, https://doi.org/10.1038/132805a0.

  • Wang, B., 1995: Interdecadal changes in El Niño onset in the last four decades. J. Climate, 8, 267285, https://doi.org/10.1175/1520-0442(1995)008<0267:ICIENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and K.-M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090, https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., B. Xiang, J. Li, P. J. Webster, M. N. Rajeevan, J. Liu, and K.-J. Ha, 2015: Rethinking Indian monsoon rainfall prediction in the context of recent global warming. Nat. Commun., 6, 7154, https://doi.org/10.1038/ncomms8154.

    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Li, and Q. He, 2017: Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016). Adv. Atmos. Sci., 34, 12351248, https://doi.org/10.1007/s00376-017-7016-3.

    • Search Google Scholar
    • Export Citation
  • Wang, B., X. Luo, Y.-M. Yang, W. Sun, M. A. Cane, W. Cai, S.-W. Yeh, and J. Liu, 2019: Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl. Acad. Sci. USA, 116, 22 51222 517, https://doi.org/10.1073/pnas.1911130116.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-Y., S.-P. Xie, and Y. Kosaka, 2018: Indo-western Pacific climate variability: ENSO forcing and internal dynamics in a tropical Pacific pacemaker simulation. J. Climate, 31, 10 12310 139, https://doi.org/10.1175/JCLI-D-18-0203.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J.-Z., and C. Wang, 2021: Joint boost to super El Niño from the Indian and Atlantic Oceans. J. Climate, 34, 49374954, https://doi.org/10.1175/JCLI-D-20-0710.1.

    • Search Google Scholar
    • Export Citation
  • Wang, R., and H.-L. Ren, 2017: The linkage between two ENSO types/modes and the interdecadal changes of ENSO around the year 2000. Atmos. Ocean. Sci. Lett., 10, 168174, https://doi.org/10.1080/16742834.2016.1258952.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and T. N. Palmer, 1997: The past and the future of El Niño. Nature, 390, 562564, https://doi.org/10.1038/37499.

  • Wei, K., C. Ouyang, H. Duan, Y. Li, M. Chen, J. Ma, H. An, and S. Zhou, 2020: Reflections on the catastrophic 2020 Yangtze River basin flooding in southern China. Innovation, 1, 100038, https://doi.org/10.1016/j.xinn.2020.100038.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, https://doi.org/10.1175/2008JCLI2710.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2017: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 96219635, https://doi.org/10.1175/JCLI-D-16-0489.1.

    • Search Google Scholar
    • Export Citation
  • Wu, R., 2017: Relationship between Indian and East Asian summer rainfall variations. Adv. Atmos. Sci., 34, 415, https://doi.org/10.1007/s00376-016-6216-6.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2002: A contrast of the East Asian summer monsoon–ENSO relationship between 1962–77 and 1978–93. J. Climate, 15, 32663279, https://doi.org/10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, R., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572584, https://doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327340, https://doi.org/10.1007/s00382-012-1427-8.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and J. C. L. Chan, 2001: The role of the Asian–Australian monsoon system in the onset time of El Niño events. J. Climate, 14, 418433, https://doi.org/10.1175/1520-0442(2001)014<0418:TROTAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, W. Chen, J. Feng, and