Tropical Indian Ocean Mixed Layer Bias in CMIP6 CGCMs Primarily Attributed to the AGCM Surface Wind Bias

Jie Feng aSchool of Oceanography, Shanghai Jiao Tong University, Shanghai, China
bState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China

Search for other papers by Jie Feng in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5349-7688
,
Tao Lian bState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
cSouthern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
aSchool of Oceanography, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Tao Lian in
Current site
Google Scholar
PubMed
Close
, and
Dake Chen bState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
cSouthern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
aSchool of Oceanography, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Dake Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The relatively weak sea surface temperature bias in the tropical Indian Ocean (TIO) simulated in the coupled general circulation model (CGCM) from the recently released CMIP6 has been found to be important in model simulations of regional and global climate. However, the cause of the bias is debated because the bias is strongly model dependent and shows marked seasonality. In this study, we separate the bias in CGCMs into bias arising from oceanic GCMs (OGCMs) and bias that is independent of OGCMs using a set of CMIP6 and OMIP6 models. We found that OGCMs contribute little to mixed layer bias in the CGCMs. The OGCM-independent bias exhibits a large-scale cold mixed layer bias in the TIO throughout the year, with an unexpectedly high degree of model consistency. By conducting a set of OGCM experiments, we show that the OGCM-independent mixed layer bias is caused mainly by surface wind bias in the utilized CGCMs. About 89% of surface wind bias in the CGCMs is due to the inability of atmospheric GCMs (AGCMs), whereas atmosphere–ocean coupling in the CGCMs has only a minor influence on surface wind bias. The bias in surface wind is also found to be the cause of subsurface temperature bias besides the ocean dynamics such as vertical mixing and vertical shear in currents. Our results indicate that correcting TIO mixed layer bias in CGCMs requires improvement in the capability of AGCM in simulating the climatological surface winds.

Significance Statement

We aimed to discover the cause of temperature bias in the Indian Ocean in CMIP6 models. The bias was separated into oceanic model and ocean-model-independent bias to correspond exactly to bias caused by the oceanic model and by the atmospheric model and coupling, respectively. Oceanic bias contributes little to bias in CMIP6, but ocean-model-independent bias explains the CMIP6 bias throughout the year. We ran oceanic model experiments to show that surface wind bias causes ocean-model-independent temperature bias in the entire TIO and subsurface temperature bias in some areas of the Indian Ocean. We further found that 89% of surface wind bias originates from the atmospheric model. The results improve our understanding of the cause of the bias in the Indian Ocean and show that our method of bias separation is effective for attributing the source of bias to different proposed mechanisms.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tao Lian, liantao@sio.org.cn

Abstract

The relatively weak sea surface temperature bias in the tropical Indian Ocean (TIO) simulated in the coupled general circulation model (CGCM) from the recently released CMIP6 has been found to be important in model simulations of regional and global climate. However, the cause of the bias is debated because the bias is strongly model dependent and shows marked seasonality. In this study, we separate the bias in CGCMs into bias arising from oceanic GCMs (OGCMs) and bias that is independent of OGCMs using a set of CMIP6 and OMIP6 models. We found that OGCMs contribute little to mixed layer bias in the CGCMs. The OGCM-independent bias exhibits a large-scale cold mixed layer bias in the TIO throughout the year, with an unexpectedly high degree of model consistency. By conducting a set of OGCM experiments, we show that the OGCM-independent mixed layer bias is caused mainly by surface wind bias in the utilized CGCMs. About 89% of surface wind bias in the CGCMs is due to the inability of atmospheric GCMs (AGCMs), whereas atmosphere–ocean coupling in the CGCMs has only a minor influence on surface wind bias. The bias in surface wind is also found to be the cause of subsurface temperature bias besides the ocean dynamics such as vertical mixing and vertical shear in currents. Our results indicate that correcting TIO mixed layer bias in CGCMs requires improvement in the capability of AGCM in simulating the climatological surface winds.

Significance Statement

We aimed to discover the cause of temperature bias in the Indian Ocean in CMIP6 models. The bias was separated into oceanic model and ocean-model-independent bias to correspond exactly to bias caused by the oceanic model and by the atmospheric model and coupling, respectively. Oceanic bias contributes little to bias in CMIP6, but ocean-model-independent bias explains the CMIP6 bias throughout the year. We ran oceanic model experiments to show that surface wind bias causes ocean-model-independent temperature bias in the entire TIO and subsurface temperature bias in some areas of the Indian Ocean. We further found that 89% of surface wind bias originates from the atmospheric model. The results improve our understanding of the cause of the bias in the Indian Ocean and show that our method of bias separation is effective for attributing the source of bias to different proposed mechanisms.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tao Lian, liantao@sio.org.cn
Save
  • Adcroft, A., and Coauthors, 2019: The GFDL global ocean and sea ice model OM4.0: Model description and simulation features. J. Adv. Model. Earth Syst., 11, 31673211, https://doi.org/10.1029/2019MS001726.

    • Search Google Scholar
    • Export Citation
  • Aumont, O., C. Ethé, A. Tagliabue, L. Bopp, and M. Gehlen, 2015: PISCES‐v2: An ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev., 8, 24652513, https://doi.org/10.5194/gmd-8-2465-2015.

    • Search Google Scholar
    • Export Citation
  • Beadling, R. L., and Coauthors, 2020: Representation of southern ocean properties across Coupled Model Intercomparison Project generations: CMIP3 to CMIP6. J. Climate, 33, 65556581, https://doi.org/10.1175/JCLI-D-19-0970.1.

    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2020: Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. J. South. Hemisphere Earth Syst. Sci., 70, 225251, https://doi.org/10.1071/ES19040.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23, 13631388, https://doi.org/10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2020: Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010.

    • Search Google Scholar
    • Export Citation
  • Boyer, T., and S. Levitus, 1994: Quality control and processing of historical temperature, salinity and oxygen data. NOAA Tech. Rep. NESDIS 81, 65 pp., https://www.ncei.noaa.gov/sites/default/files/2020-04/qc94tso.pdf.

  • Boyer, T. P., and Coauthors, 2018: World Ocean Atlas 2018. Subset: Temperature and salinity. Accessed 15 May 2023, https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18.

  • Brown, J. N., and Coauthors, 2013: Implications of CMIP3 model biases and uncertainties for climate projections in the western tropical Pacific. Climatic Change, 119, 147161, https://doi.org/10.1007/s10584-012-0603-5.

    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., and Coauthors, 2001: Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31, 14131426, https://doi.org/10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Cherchi, A., and Coauthors, 2019: Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J. Adv. Model. Earth Syst., 11, 185209, https://doi.org/10.1029/2018MS001369.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., A. Parekh, S. Ojha, C. Gnanaseelan, and R. Kakatkar, 2016a: Impact of upper ocean processes and air-sea fluxes on seasonal SST biases over the tropical Indian Ocean in the NCEP Climate Forecasting System. Int. J. Climatol., 36, 188207, https://doi.org/10.1002/joc.4336.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., A. Parekh, G. Srinivas, C. Gnanaseelan, T. S. Fousiya, R. Khandekar, and M. K. Roxy, 2016b: Processes associated with the tropical Indian Ocean subsurface temperature bias in a coupled model. J. Phys. Oceanogr., 46, 28632875, https://doi.org/10.1175/JPO-D-15-0245.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in Coordinated Ocean-Ice Reference Experiments phase II (CORE‐II). Part I: Mean states. Ocean Modell., 73, 76107, https://doi.org/10.1016/j.ocemod.2013.10.005.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., J. Vialard, S. S. C. Shenoi, D. Shankar, F. Durand, C. Ethé, and G. Madec, 2007: Simulated seasonal and interannual variability of the mixed layer heat budget in the northern Indian Ocean. J. Climate, 20, 32493268, https://doi.org/10.1175/JCLI4148.1.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Le Sommer, A. J. George Nurser, and A. C. Naveira Garabato, 2016: The impact of a variable mixing efficiency on the abyssal overturning. J. Phys. Oceanogr., 46, 663681, https://doi.org/10.1175/JPO-D-14-0259.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, https://doi.org/10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Döscher, R., and Coauthors, 2022: The EC-Earth3 Earth system model for the Climate Model Intercomparison Project 6. Geosci. Model Dev., 15, 29732022, https://doi.org/10.5194/gmd-15-2973-2022.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Fathrio, I., S. Iizuka, A. Manda, Y.-M. Kodama, S. Ishida, Q. Moteki, H. Yamada, and Y. Tachibana, 2017: Assessment of western Indian Ocean SST bias of CMIP5 models. J. Geophys. Res. Oceans, 122, 31233140, https://doi.org/10.1002/2016JC012443.

    • Search Google Scholar
    • Export Citation
  • Feng, J., T. Lian, J. Ying, J. Li, and G. Li, 2020: Do CMIP5 models show El Niño diversity? J. Climate, 33, 16191641, https://doi.org/10.1175/JCLI-D-18-0854.1.

    • Search Google Scholar
    • Export Citation
  • Feng, J., T. Lian, D. Chen, and Y. Li, 2021: The cause of the large cold bias in the northwestern Pacific Ocean. Geophys. Res. Lett., 48, e2021GL094616, https://doi.org/10.1029/2021GL094616.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Fox-Kemper, B., and Coauthors, 2021: Ocean, cryosphere and sea level change. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 1211–1362.

  • Gaspar, P., Y. Grégoris, and J.-M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at Station Papa and long-term upper ocean study site. J. Geophys. Res., 95, 16 17916 193, https://doi.org/10.1029/JC095iC09p16179.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2019: The Whole Atmosphere Community Climate Model version 6 (WACCM6). J. Geophys. Res. Atmos., 124, 12 38012 403, https://doi.org/10.1029/2019JD030943.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579, https://doi.org/10.5194/os-1-45-2005.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2016: OMIP contribution to CMIP6: Experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geosci. Model Dev., 9, 32313296, https://doi.org/10.5194/gmd-9-3231-2016.

    • Search Google Scholar
    • Export Citation
  • Guo, Y., Y. Yu, P. Lin, H. Liu, B. He, Q. Bao, S. Zhao, and X. Wang, 2020: Overview of the CMIP6 historical experiment datasets with the climate system model CAS FGOALS-f3-L. Adv. Atmos. Sci., 37, 10571066, https://doi.org/10.1007/s00376-020-2004-4.

    • Search Google Scholar
    • Export Citation
  • Hajima, T., and Coauthors, 2020: Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev., 13, 21972244, https://doi.org/10.5194/gmd-13-2197-2020.

    • Search Google Scholar
    • Export Citation
  • He, B., and Coauthors, 2019: CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation. Adv. Atmos. Sci., 36, 771778, https://doi.org/10.1007/s00376-019-9027-8.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Coauthors, 2019: Structure and performance of GFDL’s CM4.0 climate model. J. Adv. Model. Earth Syst., 11, 36913727, https://doi.org/10.1029/2019MS001829.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, https://doi.org/10.1038/ngeo1008.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000: An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105, 16 80316 821, https://doi.org/10.1029/2000JC900072.

    • Search Google Scholar
    • Export Citation
  • Kiss, A. E., and Coauthors, 2020: ACCESS-OM2 v1.0: A global ocean–sea ice model at three resolutions. Geosci. Model Dev., 13, 401442, https://doi.org/10.5194/gmd-13-401-2020.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, J. C. McWilliams, P. R. Gent, and F. O. Bryan, 2001: Equatorial circulation in a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr., 31, 518536, https://doi.org/10.1175/1520-0485(2001)031<0518:ECOAGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, Y. J., and Coauthors, 2016: Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models. J. Geophys. Res. Oceans, 121, 86358669, https://doi.org/10.1002/2016JC011993.

    • Search Google Scholar
    • Export Citation
  • Levine, R. C., A. G. Turner, D. Marathayil, and G. M. Martin, 2013: The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall. Climate Dyn., 41, 155172, https://doi.org/10.1007/s00382-012-1656-x.

    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, and Y. Du, 2015a: Monsoon-induced biases of climate models over the tropical Indian Ocean. J. Climate, 28, 30583072, https://doi.org/10.1175/JCLI-D-14-00740.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., S.-P. Xie, and Y. Du, 2015b: Climate model errors over the south Indian Ocean thermocline dome and their effect on the basin mode of interannual variability. J. Climate, 28, 30933098, https://doi.org/10.1175/JCLI-D-14-00810.1.

    • Search Google Scholar
    • Export Citation
  • Lindsay, K., 2017: A Newton-Krylov solver for fast spin‐up of online ocean tracers. Ocean Modell., 109, 3343, https://doi.org/10.1016/j.ocemod.2016.12.001.

    • Search Google Scholar
    • Export Citation
  • Long, S.-M., G. Li, K. Hu, and J. Ying, 2020: Origins of the IOD-like biases in CMIP multimodel ensembles: The atmospheric component and ocean–atmosphere coupling. J. Climate, 33, 10 43710 453, https://doi.org/10.1175/JCLI-D-20-0459.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. K. Behera, and T. Yamagata, 2007: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 21782190, https://doi.org/10.1175/JCLI4132.1.

    • Search Google Scholar
    • Export Citation
  • Madec, G., and the NEMO team, 2012: NEMO ocean engine, version 3.4. Institut Pierre-Simon Laplace Note du Pole de Modélisation 27, 367 pp.

  • Manizza, M., C. Le Quéré, A. J. Watson, and E. T. Buitenhuis, 2005: Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys. Res. Lett., 32, L05603, https://doi.org/10.1029/2004GL020778.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., M. F. Stuecker, J. B. Kajtar, M. H. England, and M. Collins, 2018: Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nat. Climate Change, 8, 493498, https://doi.org/10.1038/s41558-018-0163-4.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806, https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., and H. J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104, 15 62115 634, https://doi.org/10.1029/1999JC900068.

    • Search Google Scholar
    • Export Citation
  • Prather, M. J., 1986: Numerical advection by conservation of second-order moments. J. Geophys. Res., 91, 66716681, https://doi.org/10.1029/JD091iD06p06671.

    • Search Google Scholar
    • Export Citation
  • Rahaman, H., and Coauthors, 2020: An assessment of the Indian Ocean mean state and seasonal cycle in a suite of interannual CORE-II simulations. Ocean Modell., 145, 101503, https://doi.org/10.1016/j.ocemod.2019.101503.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., and Hallberg, R., 2018: A simplified energetics based planetary boundary layer (ePBL) approach for ocean climate simulations. Ocean Modell., 132, 112129, https://doi.org/10.1016/j.ocemod.2018.10.004.

    • Search Google Scholar
    • Export Citation
  • Sandeep, S., and R. S. Ajayamohan, 2014: Origin of cold bias over the Arabian Sea in climate models. Sci. Rep., 4, 6403, https://doi.org/10.1038/srep06403.

    • Search Google Scholar
    • Export Citation
  • Sayantani, O., C. Gnanaseelan, J. S. Chowdary, A. Parekh, and S. Rahul, 2016: Arabian Sea SST evolution during spring to summer transition period and the associated processes in coupled climate models. Int. J. Climatol., 36, 25412554, https://doi.org/10.1002/joc.4511.

    • Search Google Scholar
    • Export Citation
  • Séférian, R., and Coauthors, 2019: Evaluation of CNRM Earth system model, CNRM-ESM2-1: Role of Earth system processes in present-day and future climate. J. Adv. Model. Earth Syst., 11, 41824227, https://doi.org/10.1029/2019MS001791.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2019: The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: Investigating the causes and consequences of polar amplification. Geosci. Model Dev., 12, 11391164, https://doi.org/10.5194/gmd-12-1139-2019.

    • Search Google Scholar
    • Export Citation
  • Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual: Ocean component of the community climate system model (CCSM), LANL Tech. Rep. LAUR‐10‐01853, 141 pp., https://www2.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf.

  • St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, https://doi.org/10.1029/2002GL015633.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and Coauthors, 2019: The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev., 12, 48234873, https://doi.org/10.5194/gmd-12-4823-2019.

    • Search Google Scholar
    • Export Citation
  • Tatebe, H., and Coauthors, 2019: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev., 12, 27272765, https://doi.org/10.5194/gmd-12-2727-2019.

    • Search Google Scholar
    • Export Citation
  • Trott, C. B., B. Subrahmanyam, and E. S. Nyadjro, 2019: Influence of mesoscale features on mixed layer dynamics in the Arabian Sea. J. Geophys. Res. Oceans, 124, 33613377, https://doi.org/10.1029/2019JC014965.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2020: Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geosci. Model Dev., 13, 36433708, https://doi.org/10.5194/gmd-13-3643-2020.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and H. Burchard, 2003: A generic length-scale equation for geophysical turbulence models. J. Mar. Res., 61, 235265, https://doi.org/10.1357/002224003322005087.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

    • Search Google Scholar
    • Export Citation
  • van Marle, M. J. E., and Coauthors, 2017: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev., 10, 33293357, https://doi.org/10.5194/gmd-10-3329-2017.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2019: Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst., 11, 21772213, https://doi.org/10.1029/2019MS001683.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, S.-K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, https://doi.org/10.1038/nclimate2118.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, W., R. Seager, M. A. Cane, and B. Lyon, 2015: The rainfall annual cycle bias over east Africa in CMIP5 coupled climate models. J. Climate, 28, 97899802, https://doi.org/10.1175/JCLI-D-15-0323.1.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2019: The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteor. Soc. Japan, 97, 931965, https://doi.org/10.2151/jmsj.2019-051.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131, 845861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhao, A., C. L. Ryder, and L. J. Wilcox, 2022: How well do the CMIP6 models simulate dust aerosols? Atmos. Chem. Phys., 22, 20952119, https://doi.org/10.5194/acp-22-2095-2022.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., R.-H. Zhang, and J. Sun, 2020: North Pacific upper-ocean cold temperature biases in CMIP6 simulations and the role of regional vertical mixing. J. Climate, 33, 75237538, https://doi.org/10.1175/JCLI-D-19-0654.1.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2016: Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific Oceans: The U.S. CLIVAR Eastern Tropical Oceans Synthesis Working Group. Bull. Amer. Meteor. Soc., 97, 23052328, https://doi.org/10.1175/BAMS-D-15-00274.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 304 304 21
Full Text Views 129 129 11
PDF Downloads 159 159 22