Impact of Evaporation in Yangtze River Valley on Heat Stress in North China

Lulei Bu aDepartment of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Integrated Research on Disaster Risk International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China

Search for other papers by Lulei Bu in
Current site
Google Scholar
PubMed
Close
,
Zhiyan Zuo aDepartment of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Integrated Research on Disaster Risk International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
bShanghai Frontiers Science Center of Atmosphere–Ocean Interaction, Shanghai, China
cNational Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai, China

Search for other papers by Zhiyan Zuo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5708-723X
,
Kaiwen Zhang aDepartment of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Integrated Research on Disaster Risk International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
dState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Kaiwen Zhang in
Current site
Google Scholar
PubMed
Close
, and
Jiacan Yuan aDepartment of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Integrated Research on Disaster Risk International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China

Search for other papers by Jiacan Yuan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In North China (NC), heat stress, which can be quantitatively characterized by wet-bulb globe temperature (WBGT), is closely related to specific humidity. This study focuses on the total days for NC average daily maximum WBGT exceeding 26°C (WGBT26) per summer (June–August) from 1979 to 2017. Rather than local precipitation or evaporation in NC, the NC WBGT26 is significantly related to the nonlocal evaporation around the Yangtze River valley (YR). The abnormal positive evaporated water vapor in YR, associated with anomalously high water vapor flux from south to north at 925 hPa, is continuously transported to NC in the above-normal WBGT26 years. Such an abnormal “evaporation and transportation” process can significantly increase the water vapor in NC and therefore enhance WBGT26. The evaporation in YR peaks in mid- to late July and is closely associated with the occurrence days for daily maximum WBGT exceeding 26°C and maximum daily mean specific humidity at 925 hPa in summer. The main driver for the strongest YR evaporation anomaly from 15 July to 15 August is the simultaneous surface air temperature rather than the simultaneous or earlier soil moisture, precipitation, and vapor pressure deficit (VPD) anomaly. This condition is due to the continuously abundant soil moisture in the YR from April to September. The results of this study provide new ideas for studying heat stress in NC, indicating that nonlocal land–atmosphere interactions are crucial.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiyan Zuo, zuozhy@fudan.edu.cn

Abstract

In North China (NC), heat stress, which can be quantitatively characterized by wet-bulb globe temperature (WBGT), is closely related to specific humidity. This study focuses on the total days for NC average daily maximum WBGT exceeding 26°C (WGBT26) per summer (June–August) from 1979 to 2017. Rather than local precipitation or evaporation in NC, the NC WBGT26 is significantly related to the nonlocal evaporation around the Yangtze River valley (YR). The abnormal positive evaporated water vapor in YR, associated with anomalously high water vapor flux from south to north at 925 hPa, is continuously transported to NC in the above-normal WBGT26 years. Such an abnormal “evaporation and transportation” process can significantly increase the water vapor in NC and therefore enhance WBGT26. The evaporation in YR peaks in mid- to late July and is closely associated with the occurrence days for daily maximum WBGT exceeding 26°C and maximum daily mean specific humidity at 925 hPa in summer. The main driver for the strongest YR evaporation anomaly from 15 July to 15 August is the simultaneous surface air temperature rather than the simultaneous or earlier soil moisture, precipitation, and vapor pressure deficit (VPD) anomaly. This condition is due to the continuously abundant soil moisture in the YR from April to September. The results of this study provide new ideas for studying heat stress in NC, indicating that nonlocal land–atmosphere interactions are crucial.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiyan Zuo, zuozhy@fudan.edu.cn
Save
  • An, N., and Z. Zuo, 2021: Investigating the influence of synoptic circulation patterns on regional dry and moist heat waves in North China. Climate Dyn., 57, 12271240, https://doi.org/10.1007/s00382-021-05769-x.

    • Search Google Scholar
    • Export Citation
  • Brown, A., 2016: Heatwave mortality. Nat. Climate Change, 6, 821, https://doi.org/10.1038/nclimate3117.

  • Chen, R., and R. Lu, 2015: Comparisons of the circulation anomalies associated with extreme heat in different regions of eastern China. J. Climate, 28, 58305844, https://doi.org/10.1175/JCLI-D-14-00818.1.

    • Search Google Scholar
    • Export Citation
  • de Vrese, P., S. Hagemann, and M. Claussen, 2016: Asian irrigation, African rain: Remote impacts of irrigation. Geophys. Res. Lett., 43, 37373745, https://doi.org/10.1002/2016GL068146.

    • Search Google Scholar
    • Export Citation
  • DeAngelis, A., F. Dominguez, Y. Fan, A. Robock, M. D. Kustu, and D. Robinson, 2010: Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res., 115, D15115, https://doi.org/10.1029/2010JD013892.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2012: Robust projections of combined humidity and temperature extremes. Nat. Climate Change, 3, 126130, https://doi.org/10.1038/nclimate1682.

    • Search Google Scholar
    • Export Citation
  • Freychet, N., S. F. B. Tett, Z. Yan, and Z. Li, 2020: Underestimated change of wet-bulb temperatures over East and South China. Geophys. Res. Lett., 47, e2019GL086140, https://doi.org/10.1029/2019GL086140.

    • Search Google Scholar
    • Export Citation
  • Gasparrini, A., and Coauthors, 2017: Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health, 1, e360e367, https://doi.org/10.1016/S2542-5196(17)30156-0.

    • Search Google Scholar
    • Export Citation
  • Gu, S., C. Huang, L. Bai, C. Chu, and Q. Liu, 2016: Heat-related illness in China, summer of 2013. Int. J. Biometeor., 60, 131137, https://doi.org/10.1007/s00484-015-1011-0.

    • Search Google Scholar
    • Export Citation
  • Kang, S., and E. A. B. Eltahir, 2018: North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun., 9, 2894, https://doi.org/10.1038/s41467-018-05252-y.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and J. J. Ploshay, 2016: Detection of anthropogenic influence on a summertime heat stress index. Climatic Change, 138, 2539, https://doi.org/10.1007/s10584-016-1708-z.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570, https://doi.org/10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, R. W. Higgins, and H. M. Van den Dool, 2003: Observational evidence that soil moisture variations affect precipitation. Geophys. Res. Lett., 30, 1241, https://doi.org/10.1029/2002GL016571.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Kumar, R., V. Mishra, J. Buzan, R. Kumar, D. Shindell, and M. Huber, 2017: Dominant control of agriculture and irrigation on urban heat island in India. Sci. Rep., 7, 14054, https://doi.org/10.1038/s41598-017-14213-2.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-H., J. E. Kang, C. S. Park, D. K. Yoon, and S. Yoon, 2020: Multi-risk assessment of heat waves under intensifying climate change using Bayesian networks. Int. J. Disaster Risk Reduct., 50, 101704, https://doi.org/10.1016/j.ijdrr.2020.101704.

    • Search Google Scholar
    • Export Citation
  • Li, D., J. Yuan, and R. E. Kopp, 2020: Escalating global exposure to compound heat–humidity extremes with warming. Environ. Res. Lett., 15, 064003, https://doi.org/10.1088/1748-9326/ab7d04.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., R. A. Carhart, P. Lawday, S. Tschopp, and R. Sharp, 2008: Modeling the wet bulb globe temperature using standard meteorological measurements. J. Occup. Environ. Hyg., 5, 645655, https://doi.org/10.1080/15459620802310770.

    • Search Google Scholar
    • Export Citation
  • Liu, J., C. Zheng, L. Zheng, and Y. Lei, 2008: Ground water sustainability: Methodology and application to the North China Plain. Groundwater, 46, 897909, https://doi.org/10.1111/j.1745-6584.2008.00486.x.

    • Search Google Scholar
    • Export Citation
  • Matthews, T. K. R., R. L. Wilby, and C. Murphy, 2017: Communicating the deadly consequences of global warming for human heat stress. Proc. Natl. Acad. Sci. USA, 114, 38613866, https://doi.org/10.1073/pnas.1617526114.

    • Search Google Scholar
    • Export Citation
  • Monteiro, J. M., and R. Caballero, 2019: Characterization of extreme wet-bulb temperature events in southern Pakistan. Geophys. Res. Lett., 46, 10 65910 668, https://doi.org/10.1029/2019GL084711.

    • Search Google Scholar
    • Export Citation
  • Mora, C., and Coauthors, 2017: Global risk of deadly heat. Nat. Climate Change, 7, 501506, https://doi.org/10.1038/nclimate3322.

  • Nairn, J. R., and R. J. B. Fawcett, 2014: The excess heat factor: A metric for heatwave intensity and its use in classifying heatwave severity. Int. J. Environ. Res. Public Health, 12, 227253, https://doi.org/10.3390/ijerph120100227.

    • Search Google Scholar
    • Export Citation
  • Parsons, K., 2006: Heat stress standard ISO 7243 and its global application. Ind. Health, 44, 368379, https://doi.org/10.2486/indhealth.44.368.

    • Search Google Scholar
    • Export Citation
  • Rastogi, D., F. Lehner, and M. Ashfaq, 2020: Revisiting recent U.S. heat waves in a warmer and more humid climate. Geophys. Res. Lett., 47, e2019GL086736, https://doi.org/10.1029/2019GL086736.

    • Search Google Scholar
    • Export Citation
  • Raymond, C., T. Matthews, and R. M. Horton, 2020: The emergence of heat and humidity too severe for human tolerance. Sci. Adv., 6, eaaw1838, https://doi.org/10.1126/sciadv.aaw1838.

    • Search Google Scholar
    • Export Citation
  • Raymond, C., T. Matthews, R. M. Horton, E. M. Fischer, S. Fueglistaler, C. Ivanovich, L. Suarez-Gutierrez, and Y. Zhang, 2021: On the controlling factors for globally extreme humid heat. Geophys. Res. Lett., 48, e2021GL096082, https://doi.org/10.1029/2021GL096082.

    • Search Google Scholar
    • Export Citation
  • Ren, Z., Y. Yu, F. Zou, and Y. Xu, 2012: Quality detection of surface historical basic meteorological data (in Chinese). J. Appl. Meteor. Sci., 23, 739747.

    • Search Google Scholar
    • Export Citation
  • Rogers, C. D. W., M. Ting, C. Li, K. Kornhuber, E. D. Coffel, R. M. Horton, C. Raymond, and D. Singh, 2021: Recent increases in exposure to extreme humid–heat events disproportionately affect populated regions. Geophys. Res. Lett., 48, e2021GL094183, https://doi.org/10.1029/2021GL094183.

    • Search Google Scholar
    • Export Citation
  • Russo, S., J. Sillmann, and A. Sterl, 2017: Humid heat waves at different warming levels. Sci. Rep., 7, 7477, https://doi.org/10.1038/s41598-017-07536-7.

    • Search Google Scholar
    • Export Citation
  • Saeed, F., C.-F. Schleussner, and M. Almazroui, 2021a: From Paris to Makkah: Heat stress risks for Muslim pilgrims at 1.5°C and 2°C. Environ. Res. Lett., 16, 024037, https://doi.org/10.1088/1748-9326/abd067.

    • Search Google Scholar
    • Export Citation
  • Saeed, F., C.-F. Schleussner, and M. Ashfaq, 2021b: Deadly heat stress to become commonplace across South Asia already at 1.5°C of global warming. Geophys. Res. Lett., 48, e2020GL091191, https://doi.org/10.1029/2020GL091191.

    • Search Google Scholar
    • Export Citation
  • Schoof, J. T., T. W. Ford, and S. C. Pryor, 2017: Recent changes in U.S. regional heat wave characteristics in observations and reanalyses. J. Appl. Meteor. Climatol., 56, 26212636, https://doi.org/10.1175/JAMC-D-16-0393.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., A. Hooks, A. P. Williams, B. Cook, J. Nakamura, and N. Henderson, 2015: Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteor. Climatol., 54, 11211141, https://doi.org/10.1175/JAMC-D-14-0321.1.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 2018: How important is humidity in heat stress? J. Geophys. Res. Atmos., 123, 11 80811 810, https://doi.org/10.1029/2018JD028969.

    • Search Google Scholar
    • Export Citation
  • Speizer, S., C. Raymond, C. Ivanovich, and R. M. Horton, 2022: Concentrated and intensifying humid heat extremes in the IPCC AR6 regions. Geophys. Res. Lett., 49, e2021GL097261, https://doi.org/10.1029/2021GL097261.

    • Search Google Scholar
    • Export Citation
  • Stull, R., 2011: Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteor. Climatol., 50, 22672269, https://doi.org/10.1175/JAMC-D-11-0143.1.

    • Search Google Scholar
    • Export Citation
  • Thiery, W., and Coauthors, 2020: Warming of hot extremes alleviated by expanding irrigation. Nat. Commun., 11, 290, https://doi.org/10.1038/s41467-019-14075-4.

    • Search Google Scholar
    • Export Citation
  • Tuholske, C., K. Caylor, C. Funk, A. Verdin, S. Sweeney, K. Grace, P. Peterson, and T. Evans, 2021: Global urban population exposure to extreme heat. Proc. Natl. Acad. Sci. USA, 118, e2024792118, https://doi.org/10.1073/pnas.2024792118.

    • Search Google Scholar
    • Export Citation
  • Tuinenburg, O. A., R. W. A. Hutjes, and P. Kabat, 2012: The fate of evaporated water from the Ganges basin. J. Geophys. Res., 117, D01107, https://doi.org/10.1029/2011JD016221.

    • Search Google Scholar
    • Export Citation
  • Vicedo-Cabrera, A. M., and Coauthors, 2021: The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Climate Change, 11, 492500, https://doi.org/10.1038/s41558-021-01058-x.

    • Search Google Scholar
    • Export Citation
  • Wang, P., J. Tang, X. Sun, S. Wang, J. Wu, X. Dong, and J. Fang, 2017: Heat waves in China: Definitions, leading patterns, and connections to large-scale atmospheric circulation and SSTs. J. Geophys. Res. Atmos., 122, 10 67910 699, https://doi.org/10.1002/2017JD027180.

    • Search Google Scholar
    • Export Citation
  • Wang, P., L. R. Leung, J. Lu, F. Song, and J. Tang, 2019: Extreme wet-bulb temperatures in China: The significant role of moisture. J. Geophys. Res. Atmos., 124, 11 94411 960, https://doi.org/10.1029/2019JD031477.

    • Search Google Scholar
    • Export Citation
  • Wang, P., Y. Yang, J. Tang, L. R. Leung, and H. Liao, 2021: Intensified humid heat events under global warming. Geophys. Res. Lett., 48, e2020GL091462, https://doi.org/10.1029/2020GL091462.

    • Search Google Scholar
    • Export Citation
  • Wang, W., W. Zhou, X. Li, X. Wang, and D. Wang, 2016: Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Climate Dyn., 46, 29232941, https://doi.org/10.1007/s00382-015-2741-8.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Search Google Scholar
    • Export Citation
  • Yu, S., S. F. B. Tett, N. Freychet, and Z. Yan, 2021: Changes in regional wet heatwave in Eurasia during summer (1979–2017). Environ. Res. Lett., 16, 064094, https://doi.org/10.1088/1748-9326/ac0745.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., D. Li, E. R. Kopp, and Q. Lin, 2022: Wetbulb globe temperature (WBGT-ERA5-v1.0). Zenodo, accessed 5 November 2022, https://doi.org/10.5281/zenodo.7264385.

  • Yuan, R., X. Huang, and L. Hao, 2021: Spatio-temporal variation of vapor pressure deficit and impact factors in China in the past 40 years (in Chinese). Climate Environ. Res., 26, 413424, https://doi.org/10.3878/j.issn.1006-9585.2021.20086.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., W. Teng, X. Yang, and J. Wu, 2009: Evapotranspiration and irrigation scheduling for three landscape ornamentals in Beijing, China. N. Z. J. Crop Hortic. Sci., 37, 289294, https://doi.org/10.1080/01140670909510275.

    • Search Google Scholar
    • Export Citation
  • Zeng, D., and X. Yuan, 2021: Modeling the influence of upstream land-atmosphere coupling on the 2017 persistent drought over northeast China. J. Climate, 34, 49714988, https://doi.org/10.1175/JCLI-D-20-0650.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, D., X. Yuan, and J. K. Roundy, 2019: Effect of teleconnected land–atmosphere coupling on northeast China persistent drought in spring–summer of 2017. J. Climate, 32, 74037420, https://doi.org/10.1175/JCLI-D-19-0175.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, C., J. Liu, G. Cao, E. Kendy, H. Wang, and Y. Jia, 2010: Can China cope with its water crisis?—Perspectives from the North China Plain. Groundwater, 48, 350354, https://doi.org/10.1111/j.1745-6584.2010.00695_3.x.

    • Search Google Scholar
    • Export Citation
  • Zhu, Q., J. Lin, S. Shou, and D. Tang, 2000: Tianqixue Yuanli he Fangfa (Synoptic Principles and Methods). 3rd ed., China Meteorological Press, 914 pp.

  • Zuo, Z., and R. Zhang, 2016: Influence of soil moisture in eastern China on the East Asian summer monsoon. Adv. Atmos. Sci., 33, 151163, https://doi.org/10.1007/s00376-015-5024-8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 293 293 47
Full Text Views 108 108 15
PDF Downloads 146 146 31