Barotropic and Nonlinear Decay of the Wintertime Baroclinic Wave Packets over the North Pacific: Energetics Analysis

Anran Zhuge aInternational Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bDepartment of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Anran Zhuge in
Current site
Google Scholar
PubMed
Close
,
Benkui Tan bDepartment of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Benkui Tan in
Current site
Google Scholar
PubMed
Close
,
Cholaw Bueh aInternational Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Cholaw Bueh in
Current site
Google Scholar
PubMed
Close
, and
Zuowei Xie aInternational Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zuowei Xie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Based on daily data from the Japanese 55-year Reanalysis (JRA-55) covering the winters (NDJFM) from 1958 to 2018, this study examines the growth and decay mechanisms of the baroclinic wave packet (BWP) inferred from regression analysis over the North Pacific. Day-to-day kinetic energy (KE) and available potential energy (APE) budget analysis suggest that BWP is driven mainly by baroclinic energy conversion (CPB), barotropic energy conversion (CKB), and the nonlinear term (CKE). CPB acts as a predominant APE source for BWP. Part of CPB acts to overcome the APE loss caused by transient eddy flux and most of it acts as a dominant KE source to drive BWP throughout its lifespan. CKB acts as a KE source before day −1, and as a major KE sink to damp BWP afterward, in which the north–south gradient of the climatological meridional flow plays a key role. Similarly, CKE acts as a KE source before day 0 and as a major KE sink afterward. The damping effect of CKE comes mainly from the scale interaction through the advection of high-frequency meridional momentum by the low-frequency zonal flow. It turns out that the vertical geopotential flux divergence also plays an active role in the dynamical coupling of different vertical BWP parts. There is persistent geopotential flux transfer from the middle-tropospheric layer into the lower- and upper-tropospheric layers, which serves as a major KE source to drive the BWP anomalies for the two layers and a major KE sink for the middle-tropospheric layer where the baroclinic energy conversion is the strongest.

Significance Statement

Previous studies indicate that baroclinic waves tend to organize into wave packets and are driven by the baroclinic instability. This study finds that the baroclinic waves decay mainly through the barotropic energy conversion and nonlinear processes. The results also indicate that the vertical geopotential flux divergence plays an active role in the dynamical coupling of the BWP anomalies in different layers of the troposphere. It is therefore very important to improve the representations of the climatological-mean flow, wave–mean flow interaction, and wave–wave interaction between high- and low-frequency waves in the midlatitudes, as well as the process of vertical transfer of the geopotential flux in numerical models for a better prediction of weather and climate variability in the extratropic regions.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benkui Tan, bktan@pku.edu.cn

Abstract

Based on daily data from the Japanese 55-year Reanalysis (JRA-55) covering the winters (NDJFM) from 1958 to 2018, this study examines the growth and decay mechanisms of the baroclinic wave packet (BWP) inferred from regression analysis over the North Pacific. Day-to-day kinetic energy (KE) and available potential energy (APE) budget analysis suggest that BWP is driven mainly by baroclinic energy conversion (CPB), barotropic energy conversion (CKB), and the nonlinear term (CKE). CPB acts as a predominant APE source for BWP. Part of CPB acts to overcome the APE loss caused by transient eddy flux and most of it acts as a dominant KE source to drive BWP throughout its lifespan. CKB acts as a KE source before day −1, and as a major KE sink to damp BWP afterward, in which the north–south gradient of the climatological meridional flow plays a key role. Similarly, CKE acts as a KE source before day 0 and as a major KE sink afterward. The damping effect of CKE comes mainly from the scale interaction through the advection of high-frequency meridional momentum by the low-frequency zonal flow. It turns out that the vertical geopotential flux divergence also plays an active role in the dynamical coupling of different vertical BWP parts. There is persistent geopotential flux transfer from the middle-tropospheric layer into the lower- and upper-tropospheric layers, which serves as a major KE source to drive the BWP anomalies for the two layers and a major KE sink for the middle-tropospheric layer where the baroclinic energy conversion is the strongest.

Significance Statement

Previous studies indicate that baroclinic waves tend to organize into wave packets and are driven by the baroclinic instability. This study finds that the baroclinic waves decay mainly through the barotropic energy conversion and nonlinear processes. The results also indicate that the vertical geopotential flux divergence plays an active role in the dynamical coupling of the BWP anomalies in different layers of the troposphere. It is therefore very important to improve the representations of the climatological-mean flow, wave–mean flow interaction, and wave–wave interaction between high- and low-frequency waves in the midlatitudes, as well as the process of vertical transfer of the geopotential flux in numerical models for a better prediction of weather and climate variability in the extratropic regions.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benkui Tan, bktan@pku.edu.cn
Save
  • Black, R. X., and R. M. Dole, 1993: The dynamics of large-scale cyclogenesis over the North Pacific Ocean. J. Atmos. Sci., 50, 421442, https://doi.org/10.1175/1520-0469(1993)050<0421:TDOLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boljka, L., D. W. J. Thompson, and Y. Li, 2021: Downstream suppression of baroclinic waves. J. Climate, 34, 919930, https://doi.org/10.1175/JCLI-D-20-0483.1.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1992: The maintenance of low-frequency atmospheric anomalies. J. Atmos. Sci., 49, 19241946, https://doi.org/10.1175/1520-0469(1992)049<1924:TMOLFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burkhardt, J. P., and A. R. Lupo, 2005: The planetary- and synoptic-scale interactions in a southeast Pacific blocking episode using PV diagnostics. J. Atmos. Sci., 62, 19011916, https://doi.org/10.1175/JAS3440.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 20382053, https://doi.org/10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1999: Characteristics of wave packets in the upper troposphere. Part II: Seasonal and hemispheric variations. J. Atmos. Sci., 56, 17291747, https://doi.org/10.1175/1520-0469(1999)056<1729:COWPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2005: The impact of wave packets propagating across Asia on Pacific cyclone development. Mon. Wea. Rev., 133, 19982015, https://doi.org/10.1175/MWR2953.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 9991015, https://doi.org/10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and D. B. Yu, 1999: Characteristics of wave packets in the upper troposphere. Part I: Northern Hemisphere winter. J. Atmos. Sci., 56, 17081728, https://doi.org/10.1175/1520-0469(1999)056<1708:COWPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., and Y. Ming, 2020: Large atmospheric waves will get stronger, while small waves will get weaker by the end of the 21st century. Geophys. Res. Lett., 47, e2020GL090441, https://doi.org/10.1029/2020GL090441.

    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and R. X. Black, 1990: Life cycles of persistent anomalies. Part II: The development of persistent negative height anomalies over the North Pacific Ocean. Mon. Wea. Rev., 118, 824846, https://doi.org/10.1175/1520-0493(1990)118<0824:LCOPAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 (3), 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, https://doi.org/10.2151/sola.2011-038.

    • Search Google Scholar
    • Export Citation
  • Egger, J., and H.-D. Schilling, 1983: On the theory of the long-term variability of the atmosphere. J. Atmos. Sci., 40, 10731085, https://doi.org/10.1175/1520-0469(1983)040<1073:OTTOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2002: Fundamental mechanisms of the growth and decay of the PNA teleconnection pattern. Quart. J. Roy. Meteor. Soc., 128, 775796, https://doi.org/10.1256/0035900021643683.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2007: The atmospheric general circulation and its variability. J. Meteor. Soc. Japan, 85B, 123143, https://doi.org/10.2151/jmsj.85B.123.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and S. D. Schubert, 1994: Simulated life cycles of persistent anticyclonic anomalies over the North Pacific: Role of synoptic-scale eddies. J. Atmos. Sci., 51, 32383260, https://doi.org/10.1175/1520-0469(1994)051<3238:SLCOPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and I. N. James, 2014: Fluid Dynamics of the Midlatitude Atmosphere. John Wiley and Sons, 408 pp.

  • Huang, C. S. Y., and N. Nakamura, 2016: Local finite-amplitude wave activity as a diagnostic of anomalous weather events. J. Atmos. Sci., 73, 211229, https://doi.org/10.1175/JAS-D-15-0194.1.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., J. S. Chowdary, S.-P. Xie, Y.-M. Min, and J.-Y. Lee, 2012: Limitations of seasonal predictability for summer climate over East Asia and the northwestern Pacific. J. Climate, 25, 75747589, https://doi.org/10.1175/JCLI-D-12-00009.1.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, https://doi.org/10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and I. M. Held, 1993: Baroclinic wave packets in models and observations. J. Atmos. Sci., 50, 14131428, https://doi.org/10.1175/1520-0469(1993)050<1413:BWPIMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7A, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Search Google Scholar
    • Export Citation
  • Lupo, A. R., 1997: A diagnosis of two blocking events that occurred simultaneously over the mid-latitude Northern Hemisphere. Mon. Wea. Rev., 125, 18011823, https://doi.org/10.1175/1520-0493(1997)125<1801:ADOTBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lupo, A. R., 2021: Atmospheric blocking events: A review. Ann. N. Y. Acad. Sci., 1504, 524, https://doi.org/10.1111/nyas.14557.

  • Ma, Q., V. Lembo, and C. L. E. Franzke, 2021: The Lorenz energy cycle: Trends and the impact of modes of climate variability. Tellus, 73A, 1900033, https://doi.org/10.1080/16000870.2021.1900033.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., M. Nakamura, and J. L. Anderson, 1997: The role of high- and low-frequency dynamics in blocking formation. Mon. Wea. Rev., 125, 20742093, https://doi.org/10.1175/1520-0493(1997)125<2074:TROHAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., 1983: Global atmospheric circulation statistics, 1958–1973. NOAA Professional Paper 14, 180 pp.

  • Orlanski, I., 2003: Bifurcation in eddy life cycles: Implications for storm track variability. J. Atmos. Sci., 60, 9931023, https://doi.org/10.1175/1520-0469(2003)60<993:BIELCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 2005: A new look at the Pacific storm track variability: Sensitivity to tropical SSTs and to upstream seeding. J. Atmos. Sci., 62, 13671390, https://doi.org/10.1175/JAS3428.1.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. Katzfey, 1991: The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget. J. Atmos. Sci., 48, 19721998, https://doi.org/10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and E. K. M. Chang, 1993: Ageostrophic geopotential fluxes in downstream and upstream development of baroclinic waves. J. Atmos. Sci., 50, 212225, https://doi.org/10.1175/1520-0469(1993)050<0212:AGFIDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pan, Y., L. Li, X. Jiang, G. Li, W. Zhang, X. Wang, and A. P. Ingersoll, 2017: Earth’s changing global atmospheric energy cycle in response to climate change. Nat. Commun., 8, 14367, https://doi.org/10.1038/ncomms14367.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer, 710 pp.

  • Petterssen, S., and S. J. Smebye, 1971: On the development of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 97, 457482, https://doi.org/10.1002/qj.49709741407.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and J. L. Stanford, 1985: The observed life cycle of a baroclinic instability. J. Atmos. Sci., 42, 13641373, https://doi.org/10.1175/1520-0469(1985)042<1364:TOLCOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones. Mon. Wea. Rev., 112, 15771589, https://doi.org/10.1175/1520-0493(1984)112<1577:SAAUCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1986: Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–84. Part I: Composite structure and mean behavior. Mon. Wea. Rev., 114, 17811794, https://doi.org/10.1175/1520-0493(1986)114<1781:ECITWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., and C.-K. Park, 1991: Low-frequency intraseasonal tropical–extratropical interactions. J. Atmos. Sci., 48, 629650, https://doi.org/10.1175/1520-0469(1991)048<0629:LFITEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1978: The life cycle of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414432, https://doi.org/10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1980: Barotropic influence on the growth and decay of nonlinear baroclinic waves. J. Atmos. Sci., 37, 16791684, https://doi.org/10.1175/1520-0469(1980)037<1679:BIOTGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Swanson, K., and R. T. Pierrehumbert, 1994: Nonlinear wave packet evolution on a baroclinically unstable jet. J. Atmos. Sci., 51, 384396, https://doi.org/10.1175/1520-0469(1994)051<0384:DCCISF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tanaka, S., K. Nishii, and H. Nakamura, 2016: Vertical structure and energetics of the western Pacific teleconnection pattern. J. Climate, 29, 65976616, https://doi.org/10.1175/JCLI-D-15-0549.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., B. R. Crow, and E. A. Barnes, 2017: Intraseasonal periodicity in the Southern Hemisphere circulation on regional spatial scales. J. Atmos. Sci., 74, 865877, https://doi.org/10.1175/JAS-D-16-0094.1.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and N.-C. Lau, 1993: A diagnostic and modeling study of the monthly mean wintertime anomalies appearing in a 100-year GCM experiment. J. Atmos. Sci., 50, 28452867, https://doi.org/10.1175/1520-0469(1993)050<2845:ADAMSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tracton, M. S., 1990: Predictability and its relationship to scale interaction processes in blocking. Mon. Wea. Rev., 118, 16661695, https://doi.org/10.1175/1520-0493(1990)118<1666:PAIRTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tsou, C.-H., and P. J. Smith, 1990: The role of synoptic/planetary-scale interactions during the development of a blocking anticyclone. Tellus, 42A, 174193, https://doi.org/10.3402/tellusa.v42i1.11869.

    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, W. Chen, G. Chen, and I.-S. Kang, 2020: Intraseasonal variations of the British-Baikal corridor pattern. J. Climate, 33, 21832200, https://doi.org/10.1175/JCLI-D-19-0458.1.

    • Search Google Scholar
    • Export Citation
  • Yang, W., J. Nie, P. Lin, and B. Tan, 2007: Baroclinic wave packets in an extended quasigeostrophic two-layer model. Geophys. Res. Lett., 34, L05822, https://doi.org/10.1029/2006GL029077.

    • Search Google Scholar
    • Export Citation
  • Zhuge, A., and B. Tan, 2021: The springtime western Pacific pattern: Its formation and maintenance mechanisms and climate impacts. J. Climate, 34, 49134936, https://doi.org/10.1175/JCLI-D-20-0051.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 458 458 22
Full Text Views 234 234 10
PDF Downloads 275 275 16