Evaluation and Process-Oriented Diagnosis of the GEFSv12 Reforecasts

Jiacheng Ye aUniversity of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Jiacheng Ye in
Current site
Google Scholar
PubMed
Close
,
Zhuo Wang aUniversity of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Zhuo Wang in
Current site
Google Scholar
PubMed
Close
,
Fanglin Yang bNOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Fanglin Yang in
Current site
Google Scholar
PubMed
Close
,
Lucas Harris cNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Lucas Harris in
Current site
Google Scholar
PubMed
Close
,
Tara Jensen dNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Tara Jensen in
Current site
Google Scholar
PubMed
Close
,
Douglas E. Miller eNorthern Illinois University, DeKalb, Illinois

Search for other papers by Douglas E. Miller in
Current site
Google Scholar
PubMed
Close
,
Christina Kalb dNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Christina Kalb in
Current site
Google Scholar
PubMed
Close
,
Daniel Adriaansen dNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Daniel Adriaansen in
Current site
Google Scholar
PubMed
Close
, and
Weiwei Li dNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Weiwei Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Three levels of process-oriented model diagnostics are applied to evaluate the Global Ensemble Forecast System version 12 (GEFSv12) reforecasts. The level-1 diagnostics are focused on model systematic errors, which reveals that precipitation onset over tropical oceans occurs too early in terms of column water vapor accumulation. Since precipitation acts to deplete water vapor, this results in prevailing negative biases of precipitable water in the tropics. It is also associated with overtransport of moisture into the mid- and upper troposphere, leading to a dry bias in the lower troposphere and a wet bias in the mid–upper troposphere. The level-2 diagnostics evaluate some major predictability sources on the extended-range time scale: the Madden–Julian oscillation (MJO) and North American weather regimes. It is found that the GEFSv12 can skillfully forecast the MJO up to 16 days ahead in terms of the Real-time Multivariate MJO indices (bivariate correlation ≥ 0.6) and can reasonably represent the MJO propagation across the Maritime Continent. The weakened and less coherent MJO signals with increasing forecast lead times may be attributed to humidity biases over the Indo-Pacific warm pool region. It is also found that the weather regimes can be skillfully predicted up to 12 days ahead with persistence comparable to the observation. In the level-3 diagnostics, we examined some high-impact weather systems. The GEFSv12 shows reduced mean biases in tropical cyclone genesis distribution and improved performance in capturing tropical cyclone interannual variability, and midlatitude blocking climatology in the GEFSv12 also shows a better agreement with the observations than in the GEFSv10.

Significance Statement

The latest U.S. operational weather prediction model—Global Ensemble Forecast System version 12—is evaluated using a suite of physics-based diagnostic metrics from a climatic perspective. The foci of our study consist of three levels: 1) systematic biases in physical processes, 2) tropical and extratropical extended-range predictability sources, and 3) high-impact weather systems like hurricanes and blockings. Such process-oriented diagnostics help us link the model performance to the deficiencies of physics parameterization and thus provide useful information on future model improvement.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Ye’s current affiliation: University of Chicago, Chicago, Illinois.

Corresponding author: Zhuo Wang, zhuowang@illinois.edu

Abstract

Three levels of process-oriented model diagnostics are applied to evaluate the Global Ensemble Forecast System version 12 (GEFSv12) reforecasts. The level-1 diagnostics are focused on model systematic errors, which reveals that precipitation onset over tropical oceans occurs too early in terms of column water vapor accumulation. Since precipitation acts to deplete water vapor, this results in prevailing negative biases of precipitable water in the tropics. It is also associated with overtransport of moisture into the mid- and upper troposphere, leading to a dry bias in the lower troposphere and a wet bias in the mid–upper troposphere. The level-2 diagnostics evaluate some major predictability sources on the extended-range time scale: the Madden–Julian oscillation (MJO) and North American weather regimes. It is found that the GEFSv12 can skillfully forecast the MJO up to 16 days ahead in terms of the Real-time Multivariate MJO indices (bivariate correlation ≥ 0.6) and can reasonably represent the MJO propagation across the Maritime Continent. The weakened and less coherent MJO signals with increasing forecast lead times may be attributed to humidity biases over the Indo-Pacific warm pool region. It is also found that the weather regimes can be skillfully predicted up to 12 days ahead with persistence comparable to the observation. In the level-3 diagnostics, we examined some high-impact weather systems. The GEFSv12 shows reduced mean biases in tropical cyclone genesis distribution and improved performance in capturing tropical cyclone interannual variability, and midlatitude blocking climatology in the GEFSv12 also shows a better agreement with the observations than in the GEFSv10.

Significance Statement

The latest U.S. operational weather prediction model—Global Ensemble Forecast System version 12—is evaluated using a suite of physics-based diagnostic metrics from a climatic perspective. The foci of our study consist of three levels: 1) systematic biases in physical processes, 2) tropical and extratropical extended-range predictability sources, and 3) high-impact weather systems like hurricanes and blockings. Such process-oriented diagnostics help us link the model performance to the deficiencies of physics parameterization and thus provide useful information on future model improvement.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Ye’s current affiliation: University of Chicago, Chicago, Illinois.

Corresponding author: Zhuo Wang, zhuowang@illinois.edu

Supplementary Materials

    • Supplemental Materials (PDF 9.03 MB)
Save
  • Adler, R., and Coauthors, 2017: Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR), version 1.3 (updated daily). NOAA/National Centers for Environmental Information, accessed 8 October 2020, https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00999.

  • Ahmed, F., and C. Schumacher, 2015: Convective and stratiform components of the precipitation-moisture relationship. Geophys. Res. Lett., 42, 10 45310 462, https://doi.org/10.1002/2015GL066957.

    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, https://doi.org/10.1175/2009JCLI2392.1.

    • Search Google Scholar
    • Export Citation
  • Back, L. E., Z. Hansen, and Z. Handlos, 2017: Estimating vertical motion profile top-heaviness: Reanalysis compared to satellite-based observations and stratiform rain fraction. J. Atmos. Sci., 74, 855864, https://doi.org/10.1175/JAS-D-16-0062.1.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., M. S. Halpert, C. F. Ropelewski, V. E. Kousky, A. V. Douglas, R. C. Schnell, and M. E. Gelman, 1999: Climate Assessment for 1998. Bull. Amer. Meteor. Soc., 80 (Suppl.), S1S48, https://doi.org/10.1175/1520-0477-80.5s.S1.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and Coauthors, 2000: The 1999 North Atlantic and eastern North Pacific hurricane seasons [in “Climate Assessment for 1999”]. Bull. Amer. Meteor. Soc., 81 (Suppl.), S19S22, https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF Ensemble Prediction System. J. Atmos. Sci., 66, 603626, https://doi.org/10.1175/2008JAS2677.1.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2003: Predictability as a function of scale. Atmos.–Ocean, 41, 203215, https://doi.org/10.3137/ao.410302.

  • Brown, B., and Coauthors, 2021: The Model Evaluation Tools (MET): More than a decade of community-supported forecast verification. Bull. Amer. Meteor. Soc., 102, E782E807, https://doi.org/10.1175/BAMS-D-19-0093.1.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54, 27602774, https://doi.org/10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 28872908, https://doi.org/10.1002/qj.49712556006.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and Coauthors, 2020: Characteristics of model tropical cyclone climatology and the large-scale environment. J. Climate, 33, 44634487, https://doi.org/10.1175/JCLI-D-19-0500.1.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature, 455, 523527, https://doi.org/10.1038/nature07286.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2010: Euro-Atlantic regimes and their teleconnections. Proc. Seminar on Predictability in the European and Atlantic Regions, Reading, United Kingdom, ECMWF, https://www.ecmwf.int/sites/default/files/elibrary/2012/8609-euro-atlantic-regimes-and-their-teleconnections.pdf.

  • Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, https://doi.org/10.1175/JCLI-D-12-00061.1.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., S. Bony, D. Winker, G. Cesana, J. L. Dufresne, P. Minnis, C. J. Stubenrauch, and S. Zeng, 2010: The GCM-oriented CALIPSO cloud product (CALIPSO-GOCCP). J. Geophys. Res., 115, D00H16, https://doi.org/10.1029/2009JD012251.

    • Search Google Scholar
    • Export Citation
  • Davini, P., and F. D’Andrea, 2020: From CMIP3 to CMIP6: Northern Hemisphere atmospheric blocking simulation in present and future climate. J. Climate, 33, 10 02110 038, https://doi.org/10.1175/JCLI-D-19-0862.1.

    • Search Google Scholar
    • Export Citation
  • Davini, P., A. Weisheimer, M. Balmaseda, S. J. Johnson, F. Molteni, C. D. Roberts, R. Senan, and T. N. Stockdale, 2021: The representation of winter Northern Hemisphere atmospheric blocking in ECMWF seasonal prediction systems. Quart. J. Roy. Meteor. Soc., 147, 13441363, https://doi.org/10.1002/qj.3974.

    • Search Google Scholar
    • Export Citation
  • Dawson, A., T. N. Palmer, and S. Corti, 2012: Simulating regime structures in weather and climate prediction models. Geophys. Res. Lett., 39, L21805, https://doi.org/10.1029/2012GL053284.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 10721090, https://doi.org/10.1175/JTECH-D-12-00136.1.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., M. Sun, L. T. Nguyen, M. L. Nordeen, C. O. Haney, D. F. Keyes, and P. E. Mlynczak, 2016: Advances in geostationary-derived longwave fluxes for the CERES synoptic (SYN1deg) product. J. Atmos. Oceanic Technol., 33, 503521, https://doi.org/10.1175/JTECH-D-15-0147.1.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, https://doi.org/10.5194/acp-9-5587-2009.

    • Search Google Scholar
    • Export Citation
  • Eckmann, J.-P., and D. Ruelle, 1985: Ergodic theory of chaos and strange attractors. The Theory of Chaotic Attractors, B. R. Hunt et al., Eds., Springer, 273–312.

  • Fabiano, F., H. M. Christensen, K. Strommen, P. Athanasiadis, A. Baker, R. Schiemann, and S. Corti, 2020: Euro-Atlantic weather regimes in the PRIMAVERA coupled climate simulations: Impact of resolution and mean state biases on model performance. Climate Dyn., 54, 50315048, https://doi.org/10.1007/s00382-020-05271-w.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., and Coauthors, 2010: A framework for assessing operational Madden–Julian oscillation forecasts: A CLIVAR MJO Working Group project. Bull. Amer. Meteor. Soc., 91, 12471258, https://doi.org/10.1175/2010BAMS2816.1.

    • Search Google Scholar
    • Export Citation
  • Guan, H., and Coauthors, 2022: GEFSv12 reforecast dataset for supporting subseasonal and hydrometeorological applications. Mon. Wea. Rev., 150, 647665, https://doi.org/10.1175/MWR-D-21-0245.1.

    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 33803403, https://doi.org/10.1175/1520-0469(1993)050<3380:HSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., L. R. Leung, O. A. Garuba, C. Demott, B. Harrop, J. Lu, and M.-S. Ahn, 2021: The relationship between precipitation and precipitable water in CMIP6 simulations and implications for tropical climatology and change. J. Climate, 34, 15871600, https://doi.org/10.1175/JCLI-D-20-0211.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and G. N. Kiladis, 2014: Skill of the MJO and Northern Hemisphere blocking in GEFS medium-range reforecasts. Mon. Wea. Rev., 142, 868885, https://doi.org/10.1175/MWR-D-13-00199.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Coauthors, 2022: The reanalysis for the Global Ensemble Forecast System, version 12. Mon. Wea. Rev., 150, 5979, https://doi.org/10.1175/MWR-D-21-0023.1.

    • Search Google Scholar
    • Export Citation
  • Han, J., M. L. Witek, J. Teixeira, R. Sun, H.-L. Pan, J. K. Fletcher, and C. S. Bretherton, 2016: Implementation in the NCEP GFS of a hybrid eddy-diffusivity mass-flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Wea. Forecasting, 31, 341352, https://doi.org/10.1175/WAF-D-15-0053.1.

    • Search Google Scholar
    • Export Citation
  • Han, J., W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and F. Yang, 2017: Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Wea. Forecasting, 32, 20052017, https://doi.org/10.1175/WAF-D-17-0046.1.

    • Search Google Scholar
    • Export Citation
  • Han, J.-Y., S.-Y. Hong, K.-S. S. Lim, and J. Han, 2016: Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over Korea. Mon. Wea. Rev., 144, 21252135, https://doi.org/10.1175/MWR-D-15-0255.1.

    • Search Google Scholar
    • Export Citation
  • Harris, L. M., and S.-J. Lin, 2013: A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon. Wea. Rev., 141, 283306, https://doi.org/10.1175/MWR-D-11-00201.1.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and S.-W. Son, 2017: Madden–Julian oscillation Pacific teleconnections: The impact of the basic state and MJO representation in general circulation models. J. Climate, 30, 45674587, https://doi.org/10.1175/JCLI-D-16-0789.1.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., M. C. Wheeler, and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531543, https://doi.org/10.1175/JCLI4003.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hochman, A., P. Alpert, T. Harpaz, H. Saaroni, and G. Messori, 2019: A new dynamical systems perspective on atmospheric predictability: Eastern Mediterranean weather regimes as a case study. Sci. Adv., 5, eaau0936, https://doi.org/10.1126/sciadv.aau0936.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Huang, J., 2018: A simple accurate formula for calculating saturation vapor pressure of water and ice. J. Appl. Meteor. Climatol., 57, 12651272, https://doi.org/10.1175/JAMC-D-17-0334.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multi-satellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hung, M.-P., W.-T. Chen, C.-M. Wu, P.-J. Chen, and P.-N. Feng, 2020: Intraseasonal vertical cloud regimes based on CloudSat observations over the tropics. Remote Sens., 12, 2273, https://doi.org/10.3390/rs12142273.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., 2017: Key processes for the eastward propagation of the Madden-Julian oscillation based on multimodel simulations. J. Geophys. Res. Atmos., 122, 755770, https://doi.org/10.1002/2016JD025955.

    • Search Google Scholar
    • Export Citation
  • Jung, T., 2005: Systematic errors of the atmospheric circulation in the ECMWF forecasting system. Quart. J. Roy. Meteor. Soc., 131, 10451073, https://doi.org/10.1256/qj.04.93.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2010: The ECMWF model climate: Recent progress through improved physical parametrizations. Quart. J. Roy. Meteor. Soc., 136, 11451160, https://doi.org/10.1002/qj.634.

    • Search Google Scholar
    • Export Citation
  • Kennedy, D., T. Parker, T. Woollings, B. Harvey, and L. Shaffrey, 2016: The response of high-impact blocking weather systems to climate change. Geophys. Res. Lett., 43, 72507258, https://doi.org/10.1002/2016GL069725.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., 2017: The impact of the mean moisture bias on the key physics of MJO propagation in the ECMWF reforecast. J. Geophys. Res. Atmos., 122, 77727784, https://doi.org/10.1002/2017JD027005.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., M. A. Janiga, and K. Pegion, 2019: MJO propagation processes and mean biases in the SubX and S2S reforecasts. J. Geophys. Res. Atmos., 124, 93149331, https://doi.org/10.1029/2019JD031139.

    • Search Google Scholar
    • Export Citation
  • Kimoto, M., and M. Ghil, 1993: Multiple flow regimes in the Northern Hemisphere winter. Part I: Methodology and hemispheric regimes. J. Atmos. Sci., 50, 26252644, https://doi.org/10.1175/1520-0469(1993)050<2625:MFRITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., H. J. Diamond, J. P. Kossin, M. C. Kruk, and C. J. Schreck III, 2018: International Best Track Archive for Climate Stewardship (IBTrACS) project, version 4. NOAA/National Centers for Environmental Information, accessed 1 October 2020, https://doi.org/10.25921/82ty-9e16.

  • Kullback, S., and R. A. Leibler, 1951: On information and sufficiency. Ann. Math. Stat., 22, 7986, https://doi.org/10.1214/aoms/1177729694.

    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., S. J. Camargo, F. Vitart, A. H. Sobel, and M. K. Tippett, 2018: Subseasonal tropical cyclone genesis prediction and MJO in the S2S dataset. Wea. Forecasting, 33, 967988, https://doi.org/10.1175/WAF-D-17-0165.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S. H., J. C. Furtado, and A. J. Charlton-Perez, 2019: Wintertime North American weather regimes and the Arctic stratospheric polar vortex. Geophys. Res. Lett., 46, 14 89214 900, https://doi.org/10.1029/2019GL085592.

    • Search Google Scholar
    • Export Citation
  • Li, J., Y. Yang, and Z. Zhu, 2020: Application of MJO dynamics-oriented diagnostics to CMIP5 models. Theor. Appl. Climatol., 141, 673684, https://doi.org/10.1007/s00704-020-03185-5.

    • Search Google Scholar
    • Export Citation
  • Li, W., Z. Wang, M. S. Peng, and J. A. Ridout, 2014: Evaluation of tropical intraseasonal variability and moist processes in the NOGAPS analysis and short-term forecasts. Wea. Forecasting, 29, 975995, https://doi.org/10.1175/WAF-D-14-00010.1.

    • Search Google Scholar
    • Export Citation
  • Li, W., Z. Wang, and M. S. Peng, 2016: Evaluating tropical cyclone forecasts from the NCEP Global Ensemble Forecasting System (GEFS) reforecast version 2. Wea. Forecasting, 31, 895916, https://doi.org/10.1175/WAF-D-15-0176.1.

    • Search Google Scholar
    • Export Citation
  • Li, W., and Coauthors, 2019: Evaluating the MJO prediction skill from different configurations of NCEP GEFS extended forecast. Climate Dyn., 52, 49234936, https://doi.org/10.1007/s00382-018-4423-9.

    • Search Google Scholar
    • Export Citation
  • Lim, S. Y., C. Marzin, P. Xavier, C.-P. Chang, and B. Timbal, 2017: Impacts of boreal winter monsoon cold surges and the interaction with MJO on Southeast Asia rainfall. J. Climate, 30, 42674281, https://doi.org/10.1175/JCLI-D-16-0546.1.

    • Search Google Scholar
    • Export Citation
  • Lim, Y., S. W. Son, and D. Kim, 2018: MJO prediction skill of the subseasonal-to-seasonal prediction models. J. Climate, 31, 40754094, https://doi.org/10.1175/JCLI-D-17-0545.1.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21A, 289307, https://doi.org/10.3402/tellusa.v21i3.10086.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Description of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and Coauthors, 2019: Process-oriented evaluation of climate and weather forecasting models. Bull. Amer. Meteor. Soc., 100, 16651686, https://doi.org/10.1175/BAMS-D-18-0042.1.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., E. S. Chung, W. M. Hannah, H. Masunaga, A. J. Wimmers, and C. S. Velden, 2018: The meandering margin of the meteorological moist tropics. Geophys. Res. Lett., 45, 11771184, https://doi.org/10.1002/2017GL076440.

    • Search Google Scholar
    • Export Citation
  • Marchok, T., 2021: Important factors in the tracking of tropical cyclones in operational models. J. Appl. Meteor. Climatol., 60, 12651284, https://doi.org/10.1175/JAMC-D-20-0175.1.

    • Search Google Scholar
    • Export Citation
  • Melhauser, C., W. Li, Y. Zhu, X. Zhou, M. Peña, and D. Hou, 2017: Exploring the impact of SST on the extended range NCEP Global Ensemble Forecast System. 41st Climate Diagnostics and Prediction Workshop, Orono, ME, NOAA, https://www.weather.gov/media/sti/climate/STIP/41CDPW/41cdpw-CMelhauser.pdf.

  • Michelangeli, P.-A., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci., 52, 12371256, https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, D. E., and Z. Wang, 2019a: Assessing seasonal predictability sources and windows of high predictability in the Climate Forecast System, version 2. J. Climate, 32, 13071326, https://doi.org/10.1175/JCLI-D-18-0389.1.

    • Search Google Scholar
    • Export Citation
  • Miller, D. E., and Z. Wang, 2019b: Skillful seasonal prediction of Eurasian winter blocking and extreme temperature frequency. Geophys. Res. Lett., 46, 11 53011 538, https://doi.org/10.1029/2019GL085035.

    • Search Google Scholar
    • Export Citation
  • Miller, D. E., and Z. Wang, 2022: Northern Hemisphere winter blocking: Differing onset mechanisms across regions. J. Atmos. Sci., 79, 12911309, https://doi.org/10.1175/JAS-D-21-0104.1.

    • Search Google Scholar
    • Export Citation
  • Miller, D. E., Z. Wang, R. J. Trapp, and D. S. Harnos, 2020: Hybrid prediction of weekly tornado activity out to week 3: Utilizing weather regimes. Geophys. Res. Lett., 47, e2020GL087253, https://doi.org/10.1029/2020GL087253.

    • Search Google Scholar
    • Export Citation
  • Miller, D. E., V. A. Gensini, and B. S. Barrett, 2022: Madden-Julian oscillation influences United States tornado and hail frequency. npj Climate Atmos. Sci., 5, 37, https://doi.org/10.1038/s41612-022-00263-5.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., M. Nakamura, and J. L. Anderson, 1997: The role of high- and low-frequency dynamics in blocking formation. Mon. Wea. Rev., 125, 20742093, https://doi.org/10.1175/1520-0493(1997)125<2074:TROHAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., J. Bhate, O. P. Sreejith, and H. R. Hatwar, 2011: Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India. Climate Dyn., 36, 4155, https://doi.org/10.1007/s00382-009-0634-4.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1997: On parametrizing scales that are only somewhat smaller than the smallest resolved scales, with application to convection and orography. Proc. Workshop on New Insights and Approaches to Convective Parametrization, Reading, United Kingdom, ECMWF, 328–337, https://www.ecmwf.int/en/elibrary/75911-parametrizing-scales-are-only-somewhat-smaller-smallest-resolved-scales.

  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279304, https://doi.org/10.1002/qj.49712757202.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2012: Towards the probabilistic Earth-system simulator: A vision for the future of climate and weather prediction. Quart. J. Roy. Meteor. Soc., 138, 841861, https://doi.org/10.1002/qj.1923.

    • Search Google Scholar
    • Export Citation
  • Privè, N. C., and R. M. Errico, 2015: Spectral analysis of forecast error investigated with an observing system simulation experiment. Tellus, 67A, 25977, https://doi.org/10.3402/tellusa.v67.25977.

    • Search Google Scholar
    • Export Citation
  • Reinhold, B. B., and R. T. Pierrehumbert, 1982: Dynamics of weather regimes: Quasi-stationary waves and blocking. Mon. Wea. Rev., 110, 11051145, https://doi.org/10.1175/1520-0493(1982)110<1105:DOWRQS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., M. B. Stoner, N. C. Johnson, M. L. L’Heureux, D. C. Collins, and S. B. Feldstein, 2013: The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Climate Dyn., 40, 17491766, https://doi.org/10.1007/s00382-012-1493-y.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 20272043, https://doi.org/10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and M. Ghil, 1999: Large-scale weather regimes and local climate over the western United States. J. Climate, 12, 17961813, https://doi.org/10.1175/1520-0442(1999)012<1796:LSWRAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., N. Vigaud, J. Yuan, and M. K. Tippett, 2020a: Toward identifying subseasonal forecasts of opportunity using North American weather regimes. Mon. Wea. Rev., 148, 18611875, https://doi.org/10.1175/MWR-D-19-0285.1.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., F. Vitart, and S. J. Camargo, 2020b: Subseasonal to seasonal prediction of weather to climate with application to tropical cyclones. J. Geophys. Res. Atmos., 125, e2018JD029375, https://doi.org/10.1029/2018JD029375.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102, https://doi.org/10.1256/qj.04.106.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and A. Hollingsworth, 2002: Some aspects of the improvement in skill of numerical weather prediction. Quart. J. Roy. Meteor. Soc., 128, 647677, https://doi.org/10.1256/003590002321042135.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. D. Maloney, 2000: Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophys. Res. Lett., 27, 17391742, https://doi.org/10.1029/1999GL011043.

    • Search Google Scholar
    • Export Citation
  • Straus, D. M., S. Corti, and F. Molteni, 2007: Circulation regimes: Chaotic variability versus SST-forced predictability. J. Climate, 20, 22512272, https://doi.org/10.1175/JCLI4070.1.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., and K. Hodges, 2001: African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14, 11661179, https://doi.org/10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, https://doi.org/10.3402/tellusa.v42i3.11882.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and R. Buizza, 2019: Weather forecasting: What sets the forecast skill horizon? Sub-Seasonal to Seasonal Prediction, A. W. Robertson and F. Vitart, Eds., Elsevier, 17–45.

  • Vigaud, N., A. W. Robertson, and M. K. Tippett, 2018: Predictability of recurrent weather regimes over North America during winter from submonthly reforecasts. Mon. Wea. Rev., 146, 25592577, https://doi.org/10.1175/MWR-D-18-0058.1.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2017: Madden–Julian oscillation prediction and teleconnections in the S2S database. Quart. J. Roy. Meteor. Soc., 143, 22102220, https://doi.org/10.1002/qj.3079.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., A. W. Robertson, and D. L. Anderson, 2012: Subseasonal to seasonal prediction project: Bridging the gap between weather and climate. WMO Bull., 61, 23–28.

    • Search Google Scholar
    • Export Citation
  • Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 23072314, https://doi.org/10.1175/JCLI4074.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., and G. Magnusdottir, 2005: ITCZ breakdown in three-dimensional flows. J. Atmos. Sci., 62, 14971512, https://doi.org/10.1175/JAS3409.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., and G. Magnusdottir, 2006: The ITCZ in the central and eastern Pacific on synoptic time scales. Mon. Wea. Rev., 134, 14051421, https://doi.org/10.1175/MWR3130.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2014: Role of cumulus congestus in tropical cyclone formation in a high-resolution numerical model simulation. J. Atmos. Sci., 71, 16811700, https://doi.org/10.1175/JAS-D-13-0257.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., W. Li, M. S. Peng, X. Jiang, R. McTaggart-Cowan, and C. A. Davis, 2018: Predictive skill and predictability of North Atlantic tropical cyclogenesis in different synoptic flow regimes. J. Atmos. Sci., 75, 361378, https://doi.org/10.1175/JAS-D-17-0094.1.

    • Search Google Scholar
    • Export Citation
  • Wei, Y., H.-L. Ren, M. Mu, and J.-X. Fu, 2020: Nonlinear optimal moisture perturbations as excitation of primary MJO events in a hybrid coupled climate model. Climate Dyn., 54, 675699, https://doi.org/10.1007/s00382-019-05021-7.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xiao, H., and Coauthors, 2014: Diagnosis of the marine low cloud simulation in the NCAR Community Earth System Model (CESM) and the NCEP Global Forecast System (GFS)-Modular Ocean Model v4 (MOM4) coupled model. Climate Dyn., 43, 737752, https://doi.org/10.1007/s00382-014-2067-y.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Ling, 2017: Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Climate, 30, 34393459, https://doi.org/10.1175/JCLI-D-16-0614.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., B. E. Mapes, and B. J. Soden, 2003: Bimodality in tropical water vapour. Quart. J. Roy. Meteor. Soc., 129, 28472866, https://doi.org/10.1256/qj.02.166.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., and Z. Wang, 2015: Interannual variability of tropical cyclone activity and regional Hadley circulation over the northeastern Pacific. Geophys. Res. Lett., 42, 24732481, https://doi.org/10.1002/2015GL063318.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., S. J. Lin, J. H. Chen, L. M. Harris, X. Chen, and S. L. Rees, 2019: Toward convective-scale prediction within the Next Generation Global Prediction System. Bull. Amer. Meteor. Soc., 100, 12251243, https://doi.org/10.1175/BAMS-D-17-0246.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., and Coauthors, 2022: The development of the NCEP Global Ensemble Forecast System version 12